水下
对偶(语法数字)
计算机科学
领域(数学分析)
人工智能
计算机视觉
地质学
数学
海洋学
艺术
数学分析
文学类
作者
Lintao Peng,Liheng Bian
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence
[Association for the Advancement of Artificial Intelligence (AAAI)]
日期:2025-04-11
卷期号:39 (6): 6461-6469
标识
DOI:10.1609/aaai.v39i6.32692
摘要
Recently, learning-based Underwater Image Enhancement (UIE) methods have demonstrated promising performance. However, existing learning-based methods still face two challenges. 1) They rarely consider the inconsistent degradation levels in different spatial regions and spectral bands simultaneously. 2) They treat all regions equally, ignoring that the regions with high-frequency details are more difficult to reconstruct. To address these challenges, we propose a novel UIE method based on spatial-spectral dual-domain adaptive learning, termed SS-UIE. Specifically, we first introduce a spatial-wise Multi-scale Cycle Selective Scan (MCSS) module and a Spectral-Wise Self-Attention (SWSA) module, both with linear complexity, and combine them in parallel to form a basic Spatial-Spectral block (SS-block). Benefiting from the global receptive field of MCSS and SWSA, SS-block can effectively model the degradation levels of different spatial regions and spectral bands, thereby enabling degradation level-based dual-domain adaptive UIE. By stacking multiple SS-blocks, we build our SS-UIE network. Additionally, a Frequency-Wise Loss (FWL) is introduced to narrow the frequency-wise discrepancy and reinforce the model's attention on the regions with high-frequency details. Extensive experiments validate that the SS-UIE technique outperforms state-of-the-art UIE methods while requiring cheaper computational and memory costs.
科研通智能强力驱动
Strongly Powered by AbleSci AI