亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Constructing a neural network model based on tumor-infiltrating lymphocytes (TILs) to predict the survival of hepatocellular carcinoma patients

医学 肝细胞癌 病态的 比例危险模型 队列 肿瘤科 内科学 肿瘤浸润淋巴细胞 癌症 免疫疗法
作者
Wenqing Zhong,Ziyin Zhao,Xin Fang,Jingyi Sun,Yanbing Wei,Fengda Li,Bing Han,Jin Cheng
出处
期刊:PeerJ [PeerJ, Inc.]
卷期号:13: e19351-e19351
标识
DOI:10.7717/peerj.19351
摘要

Background Hepatocellular carcinoma (HCC) is the most common primary liver cancer worldwide, and early pathological diagnosis is crucial for formulating treatment plans. Despite the widespread attention to pathology in the treatment of HCC patients, a large amount of information contained in pathological images is often overlooked. Methods We retrospectively collected clinical data and pathological slide images from (a) 331 HCC patients at Qingdao University Affiliated Hospital between January 2013 and December 2016 and (b) 180 HCC patients from The Cancer Genome Atlas (TCGA). After data screening, precise quantification of various cell types was achieved using QuPath software. Key factors related to the survival prognosis of pathologically confirmed HCC patients were identified through Cox regression and neural network models, and potential therapeutic targets were screened. Results Our study showed that tumour-infiltrating lymphocytes (TILs) had a protective effect. We quantified the TILs index by machine learning and built a neural network model to predict the prognostic risk of patients (ROC = 0.836 for training set ROC validation set). 95% CI [0.7688–0.896], and there was a significant difference in prognosis in the high-low risk group predicted by the model ( p = 2.6e−18, HR = 0.18, 95% CI [0.12–0.27], and TNFSF4 was identified as a possible immunotherapy target. Conclusion This study included a total of 511 patients, divided into a training cohort of 331 cases (from Qingdao University Hospital between January 2013 and December 2016) and a validation cohort of 180 cases (TCGA). The results revealed that tumor-infiltrating lymphocytes (TILs) have a protective effect and successfully predicted the survival risk of liver cancer patients using machine learning and neural network technology. The discovery of TNFSF4 provides a new potential target for immunotherapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
doni发布了新的文献求助10
6秒前
穆千完成签到,获得积分10
7秒前
wf发布了新的文献求助10
11秒前
乐正听白发布了新的文献求助30
21秒前
25秒前
25秒前
31秒前
50秒前
53秒前
53秒前
千层饼完成签到,获得积分20
58秒前
59秒前
1分钟前
Lorain发布了新的文献求助10
1分钟前
深情安青应助doni采纳,获得10
1分钟前
番茄黄瓜芝士片完成签到 ,获得积分10
1分钟前
GingerF应助果糖不加糖采纳,获得100
1分钟前
千层饼发布了新的文献求助30
1分钟前
星辰大海应助khan采纳,获得10
1分钟前
1分钟前
tuanheqi应助科研通管家采纳,获得150
1分钟前
科研通AI5应助远谋菠萝莓采纳,获得10
1分钟前
1分钟前
1分钟前
Lorain完成签到,获得积分10
1分钟前
Hedy发布了新的文献求助10
1分钟前
khan发布了新的文献求助10
1分钟前
1分钟前
1分钟前
MIPAMING发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
wwz应助MIPAMING采纳,获得10
1分钟前
MIPAMING完成签到,获得积分10
2分钟前
星期八发布了新的文献求助10
2分钟前
远山笑你完成签到 ,获得积分10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5173230
求助须知:如何正确求助?哪些是违规求助? 4363189
关于积分的说明 13585204
捐赠科研通 4211557
什么是DOI,文献DOI怎么找? 2309882
邀请新用户注册赠送积分活动 1308933
关于科研通互助平台的介绍 1256293