Optimizing the n -type carrier concentration of an InVO4 photocatalyst by codoping with donors and intrinsic defects

纸卷 计算机科学 类型(生物学) 算法 生物 神学 哲学 生态学
作者
Aodi Zhang,Hang Li,Hongbin Xu,Baoying Dou,Genqiang Zhang,Wentao Wang
出处
期刊:Physical review applied [American Physical Society]
卷期号:22 (4) 被引量:1
标识
DOI:10.1103/physrevapplied.22.044047
摘要

Although indium vanadate (${\mathrm{InVO}}_{4}$) is an excellent n-type semiconductor, a controlled n-type carrier concentration of the ${\mathrm{InVO}}_{4}$ photocatalyst is required to enhance its photocatalytic activity. This study systematically explores the self-consistent Fermi energies, dominant intrinsic defects, electron concentration (${n}_{0}$), and defect concentration of ${\mathrm{InVO}}_{4}$ using density-functional theory coupled with detailed thermodynamic equilibrium simulations. The results indicate that the ${\mathrm{V}}_{\mathrm{In}}$ antisite defect (the vanadium atom replacing the indium atom) is the dominant intrinsic defect in ${\mathrm{InVO}}_{4}$. The calculated Fermi energy pinning position indicates that ${\mathrm{InVO}}_{4}$ has n-type doping behavior from intrinsic defects under $\mathrm{O}$-poor growth conditions, consistent with the experiments. Interestingly, donor (${D}^{+}$) doping is positive for improving the ${n}_{0}$ of the intrinsic-defect-doped ${\mathrm{InVO}}_{4}$. Therefore, at 300 K, a broad optimized chemical potential region (OCPR) is obtained for ${\mathrm{InVO}}_{4}$ codoped with donors and intrinsic defects. In this OCPR, the ${n}_{0}$ is higher, without recombination centers and significant compensation, significantly enhancing the photocatalytic activity of ${\mathrm{InVO}}_{4}$. However, for the case of growth temperature at 873 K and after quenching from 873 to 300 K, the OCPR is much narrower than that at 300 K, indicating that higher temperatures may adversely affect the OCPR. Our results provide deep insights into defect behaviors in ${\mathrm{InVO}}_{4}$ and suggest strategies for enhancing its n-type conductivity properties, offering new opportunities for manipulating the photocatalytic performance of ${\mathrm{InVO}}_{4}$.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
666发布了新的文献求助10
1秒前
彭于晏应助认真的不评采纳,获得10
2秒前
义气的十八完成签到,获得积分20
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
专注的问寒完成签到,获得积分10
2秒前
SciGPT应助纸轮采纳,获得10
3秒前
幽默的蜡烛完成签到 ,获得积分10
3秒前
3秒前
科研通AI5应助冷艳灯泡采纳,获得10
3秒前
Timon发布了新的文献求助10
3秒前
caoj发布了新的文献求助30
3秒前
小景007完成签到,获得积分10
4秒前
5秒前
5秒前
李爱国应助13223456采纳,获得10
6秒前
YSRAHTN完成签到,获得积分10
6秒前
辛勤的刚发布了新的文献求助10
7秒前
酷波er应助张1采纳,获得10
7秒前
8秒前
wen发布了新的文献求助10
8秒前
Marvel发布了新的文献求助10
8秒前
yu完成签到,获得积分10
8秒前
斜杠青年完成签到 ,获得积分10
8秒前
隐形曼青应助Hmxu采纳,获得10
9秒前
ding应助yolo采纳,获得10
9秒前
旺旺完成签到,获得积分10
10秒前
诚心无颜完成签到,获得积分10
10秒前
粥粥sqk发布了新的文献求助10
10秒前
幽默服饰发布了新的文献求助10
11秒前
Yyan完成签到,获得积分10
11秒前
wen完成签到,获得积分10
11秒前
激情的水壶完成签到,获得积分10
12秒前
fangzhang发布了新的文献求助10
12秒前
12秒前
无花果应助孟冬采纳,获得10
12秒前
毕业upup完成签到,获得积分10
12秒前
小王完成签到,获得积分10
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Food Microbiology - An Introduction (5th Edition) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4884713
求助须知:如何正确求助?哪些是违规求助? 4169858
关于积分的说明 12939294
捐赠科研通 3930463
什么是DOI,文献DOI怎么找? 2156559
邀请新用户注册赠送积分活动 1174925
关于科研通互助平台的介绍 1079670