Built Environment’s Non-Linear Impact on Subway Passenger Flow Through Improved Interpretable Machine Learning

流量(数学) 计算机科学 环境科学 运输工程 人工智能 工程类 数学 几何学
作者
Peikun Li,Xumei Chen,Wenbo Lu,Hao Wang,Lei Yu
出处
期刊:Transportation Research Record [SAGE Publishing]
被引量:1
标识
DOI:10.1177/03611981241287535
摘要

Understanding the complex correlation between the built environment and subway passenger flow can provide unique insights for the development of transportation operations and urban coordination policies. Few studies have systematically analyzed the rationality of selecting built environment variables and further explored the non-linear relationships. In this study, we integrated various sources of built environmental factors and developed an interpretable machine learning analysis framework using backward elimination extreme gradient boosting and SHapley Additive exPlanations (SHAP) values analysis (BE-XGBoost-SHAP). The framework was validated by analyzing passenger flows during the morning peak, non-peak, and evening peak periods at the station level. The research results indicate that there are significant differences between built environment factors and the time-varying passenger flow. Land use characteristics significantly dominate across all three temporal periods. The importance of other variable types in relation to passenger flows varies significantly across the three time periods. It is worth noting that the relationships between all variables and passenger flow at different time periods are non-linear, with the majority displaying threshold effects. Compared with the gradient boosting decision tree (GBDT) and ordinary least squares (OLS) models, the proposed interpretive framework performs better as regards R-square, root mean square error (RMSE), and mean absolute error (MAE) metrics. This study offers valuable insights, elucidating the pivotal land use attributes that notably affect passenger flow, the significance of varied built environment factors across distinct time spans, and the acknowledgment of non-linearities and threshold effects within these relationships. These findings are imperative for urban planning and the enhancement of station area design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
、、、完成签到,获得积分10
刚刚
1秒前
zzz完成签到,获得积分10
1秒前
xxx发布了新的文献求助10
2秒前
魔幻的微笑完成签到,获得积分10
2秒前
Joeswith完成签到,获得积分10
2秒前
七七完成签到,获得积分10
2秒前
李健的小迷弟应助wdlc采纳,获得10
3秒前
李健的小迷弟应助曾经阁采纳,获得10
3秒前
852应助111采纳,获得10
3秒前
3秒前
4秒前
4秒前
koi发布了新的文献求助10
4秒前
277发布了新的文献求助30
4秒前
你说什么我听不见完成签到,获得积分10
5秒前
YMP完成签到,获得积分20
5秒前
Bluebulu完成签到,获得积分10
5秒前
ddssa1988发布了新的文献求助10
6秒前
唐依萱关注了科研通微信公众号
6秒前
Cxyyyl完成签到,获得积分10
7秒前
YU小发布了新的文献求助10
7秒前
妍小猪发布了新的文献求助30
8秒前
曲奇发布了新的文献求助50
8秒前
9秒前
33发布了新的文献求助10
9秒前
午夜小菜鸟完成签到,获得积分10
9秒前
所所应助忧虑的以寒采纳,获得10
10秒前
10秒前
11秒前
SciGPT应助风趣的梦露采纳,获得10
11秒前
柒蕲七发布了新的文献求助10
11秒前
司马秋凌完成签到,获得积分10
11秒前
大个应助yyyyyyyy采纳,获得30
12秒前
12秒前
奥利奥利奥完成签到 ,获得积分10
12秒前
13秒前
nemo完成签到,获得积分10
15秒前
15秒前
JShao完成签到,获得积分10
15秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
The Effect of Irrigation Solutions on Recurrence of Chronic Subdural Hematoma: A Consecutive Cohort Study of 234 Patients 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Introduction to Linear Optimization, by Dimitris Bertsimas and John N. Tsitsiklis 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3828500
求助须知:如何正确求助?哪些是违规求助? 3370806
关于积分的说明 10465265
捐赠科研通 3090821
什么是DOI,文献DOI怎么找? 1700556
邀请新用户注册赠送积分活动 817893
科研通“疑难数据库(出版商)”最低求助积分说明 770571