Perovskite Probe-Based Machine Learning Imaging Model for Rapid Pathologic Diagnosis of Cancers

癌症 乳腺癌 病理 肺癌 接收机工作特性 癌症研究 医学 放射科 人工智能 计算机科学 内科学
作者
Jimei Chi,Yonggan Xue,Yinying Zhou,Teng Han,Bobin Ning,Lijun Cheng,Hongfei Xie,Huadong Wang,Wen‐Chen Wang,Qingyu Meng,Kaijie Fan,Fangming Gong,Junzhen Fan,Nan Jiang,Zhongfan Liu,Ke Pan,Hongyu Sun,Jiajin Zhang,Qian Zheng,Jiandong Wang
出处
期刊:ACS Nano [American Chemical Society]
卷期号:18 (35): 24295-24305 被引量:4
标识
DOI:10.1021/acsnano.4c06351
摘要

Accurately distinguishing tumor cells from normal cells is a key issue in tumor diagnosis, evaluation, and treatment. Fluorescence-based immunohistochemistry as the standard method faces the inherent challenges of the heterogeneity of tumor cells and the lack of big data analysis of probing images. Here, we have demonstrated a machine learning-driven imaging method for rapid pathological diagnosis of five types of cancers (breast, colon, liver, lung, and stomach) using a perovskite nanocrystal probe. After conducting the bioanalysis of survivin expression in five different cancers, high-efficiency perovskite nanocrystal probes modified with the survivin antibody can recognize the cancer tissue section at the single cell level. The tumor to normal (T/N) ratio is 10.3-fold higher than that of a conventional fluorescent probe, which can successfully differentiate between tumors and adjacent normal tissues within 10 min. The features of the fluorescence intensity and pathological texture morphology have been extracted and analyzed from 1000 fluorescence images by machine learning. The final integrated decision model makes the area under the receiver operating characteristic curve (area under the curve) value of machine learning classification of breast, colon, liver, lung, and stomach above 90% while predicting the tumor organ of 92% of positive patients. This method demonstrates a high T/N ratio probe in the precise diagnosis of multiple cancers, which will be good for improving the accuracy of surgical resection and reducing cancer mortality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苹果书文完成签到 ,获得积分10
2秒前
4秒前
4秒前
圆圆完成签到 ,获得积分10
5秒前
xxxxyyyy1完成签到 ,获得积分10
6秒前
7秒前
lee完成签到,获得积分10
8秒前
anna521212完成签到 ,获得积分10
8秒前
舍舍舍发布了新的文献求助10
8秒前
小易不易发布了新的文献求助10
8秒前
陌路完成签到,获得积分10
8秒前
托尔斯泰完成签到,获得积分10
9秒前
mm完成签到 ,获得积分10
10秒前
12秒前
欣然如风发布了新的文献求助10
12秒前
13秒前
13秒前
13秒前
yiyi131发布了新的文献求助10
14秒前
拉拉完成签到,获得积分20
14秒前
15秒前
15秒前
8R60d8应助科研通管家采纳,获得10
16秒前
无花果应助科研通管家采纳,获得10
16秒前
JamesPei应助科研通管家采纳,获得10
16秒前
CipherSage应助科研通管家采纳,获得10
16秒前
脑洞疼应助科研通管家采纳,获得10
16秒前
kk应助科研通管家采纳,获得10
16秒前
8R60d8应助科研通管家采纳,获得10
16秒前
dong应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
小二郎应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
思源应助科研通管家采纳,获得10
17秒前
8R60d8应助科研通管家采纳,获得10
17秒前
17秒前
wanci应助科研通管家采纳,获得10
17秒前
共享精神应助科研通管家采纳,获得10
17秒前
拉拉发布了新的文献求助10
17秒前
YamDaamCaa应助科研通管家采纳,获得30
17秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993930
求助须知:如何正确求助?哪些是违规求助? 3534527
关于积分的说明 11265807
捐赠科研通 3274431
什么是DOI,文献DOI怎么找? 1806358
邀请新用户注册赠送积分活动 883211
科研通“疑难数据库(出版商)”最低求助积分说明 809712