亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Perovskite Probe-Based Machine Learning Imaging Model for Rapid Pathologic Diagnosis of Cancers

癌症 乳腺癌 病理 肺癌 接收机工作特性 癌症研究 医学 放射科 人工智能 计算机科学 内科学
作者
Jimei Chi,Yonggan Xue,Yinying Zhou,Teng Han,Bobin Ning,Lijun Cheng,Hongfei Xie,Huadong Wang,Wenchen Wang,Qingyu Meng,Kaijie Fan,Fangming Gong,Junzhen Fan,Nan Jiang,Zhongfan Liu,Ke Pan,Hongyu Sun,Jiajin Zhang,Qian Zheng,Jiandong Wang
出处
期刊:ACS Nano [American Chemical Society]
卷期号:18 (35): 24295-24305 被引量:6
标识
DOI:10.1021/acsnano.4c06351
摘要

Accurately distinguishing tumor cells from normal cells is a key issue in tumor diagnosis, evaluation, and treatment. Fluorescence-based immunohistochemistry as the standard method faces the inherent challenges of the heterogeneity of tumor cells and the lack of big data analysis of probing images. Here, we have demonstrated a machine learning-driven imaging method for rapid pathological diagnosis of five types of cancers (breast, colon, liver, lung, and stomach) using a perovskite nanocrystal probe. After conducting the bioanalysis of survivin expression in five different cancers, high-efficiency perovskite nanocrystal probes modified with the survivin antibody can recognize the cancer tissue section at the single cell level. The tumor to normal (T/N) ratio is 10.3-fold higher than that of a conventional fluorescent probe, which can successfully differentiate between tumors and adjacent normal tissues within 10 min. The features of the fluorescence intensity and pathological texture morphology have been extracted and analyzed from 1000 fluorescence images by machine learning. The final integrated decision model makes the area under the receiver operating characteristic curve (area under the curve) value of machine learning classification of breast, colon, liver, lung, and stomach above 90% while predicting the tumor organ of 92% of positive patients. This method demonstrates a high T/N ratio probe in the precise diagnosis of multiple cancers, which will be good for improving the accuracy of surgical resection and reducing cancer mortality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
唐泽雪穗应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
ldysaber完成签到,获得积分10
18秒前
Wwwwww发布了新的文献求助10
1分钟前
李李原上草完成签到 ,获得积分0
1分钟前
Wwwwww完成签到,获得积分10
1分钟前
1分钟前
科研通AI6应助kendall采纳,获得100
1分钟前
唐泽雪穗应助科研通管家采纳,获得10
2分钟前
Jasper应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
燃烧的皮皮虾完成签到,获得积分10
2分钟前
3分钟前
完美世界应助科研通管家采纳,获得10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
小马甲应助张智采纳,获得10
4分钟前
Owen应助lezbj99采纳,获得10
4分钟前
4分钟前
satsuki发布了新的文献求助10
4分钟前
4分钟前
5分钟前
5分钟前
Kz发布了新的文献求助10
5分钟前
科研通AI6应助Kz采纳,获得10
5分钟前
唐泽雪穗应助科研通管家采纳,获得10
6分钟前
唐泽雪穗应助科研通管家采纳,获得10
6分钟前
ceeray23应助科研通管家采纳,获得10
6分钟前
6分钟前
张智发布了新的文献求助10
6分钟前
浮游应助satsuki采纳,获得10
6分钟前
张智完成签到,获得积分20
6分钟前
充电宝应助Karol25采纳,获得10
7分钟前
7分钟前
7分钟前
852应助韩立采纳,获得10
7分钟前
7分钟前
Marciu33发布了新的文献求助10
7分钟前
7分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5077871
求助须知:如何正确求助?哪些是违规求助? 4296856
关于积分的说明 13387437
捐赠科研通 4119374
什么是DOI,文献DOI怎么找? 2255953
邀请新用户注册赠送积分活动 1260260
关于科研通互助平台的介绍 1193672