Perovskite Probe-Based Machine Learning Imaging Model for Rapid Pathologic Diagnosis of Cancers

癌症 乳腺癌 病理 肺癌 接收机工作特性 癌症研究 医学 放射科 人工智能 计算机科学 内科学
作者
Jimei Chi,Yonggan Xue,Yinying Zhou,Teng Han,Bobin Ning,Lijun Cheng,Hongfei Xie,Huadong Wang,Wen‐Chen Wang,Qingyu Meng,Kaijie Fan,Fangming Gong,Junzhen Fan,Nan Jiang,Zhongfan Liu,Ke Pan,Hongyu Sun,Jiajin Zhang,Qian Zheng,Jiandong Wang
出处
期刊:ACS Nano [American Chemical Society]
卷期号:18 (35): 24295-24305 被引量:3
标识
DOI:10.1021/acsnano.4c06351
摘要

Accurately distinguishing tumor cells from normal cells is a key issue in tumor diagnosis, evaluation, and treatment. Fluorescence-based immunohistochemistry as the standard method faces the inherent challenges of the heterogeneity of tumor cells and the lack of big data analysis of probing images. Here, we have demonstrated a machine learning-driven imaging method for rapid pathological diagnosis of five types of cancers (breast, colon, liver, lung, and stomach) using a perovskite nanocrystal probe. After conducting the bioanalysis of survivin expression in five different cancers, high-efficiency perovskite nanocrystal probes modified with the survivin antibody can recognize the cancer tissue section at the single cell level. The tumor to normal (T/N) ratio is 10.3-fold higher than that of a conventional fluorescent probe, which can successfully differentiate between tumors and adjacent normal tissues within 10 min. The features of the fluorescence intensity and pathological texture morphology have been extracted and analyzed from 1000 fluorescence images by machine learning. The final integrated decision model makes the area under the receiver operating characteristic curve (area under the curve) value of machine learning classification of breast, colon, liver, lung, and stomach above 90% while predicting the tumor organ of 92% of positive patients. This method demonstrates a high T/N ratio probe in the precise diagnosis of multiple cancers, which will be good for improving the accuracy of surgical resection and reducing cancer mortality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
冲冲冲完成签到,获得积分10
3秒前
小蘑菇应助surge采纳,获得10
4秒前
xc发布了新的文献求助10
5秒前
Murphy完成签到 ,获得积分10
6秒前
愉快的楷瑞完成签到,获得积分10
8秒前
风衣拖地发布了新的文献求助150
9秒前
LELE完成签到,获得积分10
10秒前
朝瑶发布了新的文献求助10
11秒前
16秒前
16秒前
小马甲应助重要亦金采纳,获得10
17秒前
sure发布了新的文献求助10
19秒前
Hoax发布了新的文献求助10
20秒前
研友_VZG7GZ应助虚拟的惜筠采纳,获得10
24秒前
能干的谷蕊完成签到 ,获得积分10
25秒前
CodeCraft应助如意的书南采纳,获得10
25秒前
xc完成签到,获得积分10
27秒前
美好山槐完成签到,获得积分10
29秒前
汉堡包应助vvvvvv采纳,获得10
31秒前
32秒前
32秒前
科目三应助DDDOG采纳,获得30
33秒前
乐乐应助方寸星河采纳,获得10
34秒前
35秒前
美少女壮壮完成签到 ,获得积分10
38秒前
英俊的铭应助扒开皮皮采纳,获得10
38秒前
40秒前
42秒前
46秒前
刘刘发布了新的文献求助10
46秒前
DDDOG发布了新的文献求助30
47秒前
所所应助rrrrroxie采纳,获得10
48秒前
鹤鸣完成签到,获得积分10
48秒前
49秒前
扒开皮皮发布了新的文献求助10
51秒前
昏睡的蟠桃应助sss采纳,获得200
51秒前
科研通AI2S应助li采纳,获得10
52秒前
云宇发布了新的文献求助10
54秒前
充电宝应助觉悟111采纳,获得10
54秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778404
求助须知:如何正确求助?哪些是违规求助? 3324131
关于积分的说明 10217172
捐赠科研通 3039355
什么是DOI,文献DOI怎么找? 1667977
邀请新用户注册赠送积分活动 798463
科研通“疑难数据库(出版商)”最低求助积分说明 758385