氡
探测器
环境科学
电离室
噪音(视频)
气流
电离
核工程
遥感
计算机科学
物理
工程类
光学
离子
机械工程
核物理学
地质学
图像(数学)
人工智能
量子力学
作者
Xianglong Dong,Zi-ji Ma,Jiang Zhiwen,Qi Wang,Rui Gou
标识
DOI:10.1016/j.apradiso.2024.111467
摘要
Radon, prevalent in underground spaces, requires continuous monitoring due to health risks. Traditional detectors are often expensive, bulky, and ill-suited for humid environments in underground spaces. This study presents a compact, cost-effective radon detector designed for long-term, online monitoring. It uses a small ionization chamber with natural airflow, avoiding the need for fans or pumps, and includes noise filtering and humidity mitigation. Featuring multi-point networking and easy integration capabilities, this detector significantly enhances radon monitoring in challenging, underground conditions.
科研通智能强力驱动
Strongly Powered by AbleSci AI