OligoFormer: an accurate and robust prediction method for siRNA design

计算机科学 小干扰RNA 编码器 嵌入 人工智能 源代码 算法 核糖核酸 数据挖掘 化学 基因 生物化学 操作系统
作者
Yilan Bai,Haochen Zhong,Taiwei Wang,Zhi John Lu
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:40 (10) 被引量:10
标识
DOI:10.1093/bioinformatics/btae577
摘要

Abstract Motivation RNA interference (RNAi) has become a widely used experimental approach for post-transcriptional regulation and is increasingly showing its potential as future targeted drugs. However, the prediction of highly efficient siRNAs (small interfering RNAs) is still hindered by dataset biases, the inadequacy of prediction methods, and the presence of off-target effects. To overcome these limitations, we propose an accurate and robust prediction method, OligoFormer, for siRNA design. Results OligoFormer comprises three different modules including thermodynamic calculation, RNA-FM module, and Oligo encoder. Oligo encoder is the core module based on the transformer encoder. Taking siRNA and mRNA sequences as input, OligoFormer can obtain thermodynamic parameters, RNA-FM embedding, and Oligo embedding through these three modules, respectively. We carefully benchmarked OligoFormer against six comparable methods on siRNA efficacy datasets. OligoFormer outperforms all the other methods, with an average improvement of 9% in AUC, 6.6% in PRC, 9.8% in F1 score, and 5.1% in PCC compared to the best method among them in our inter-dataset validation. We also provide a comprehensive pipeline with prediction of siRNA efficacy and off-target effects using PITA score and TargetScan score. The ablation study shows RNA-FM module and thermodynamic parameters improved the performance and accelerated convergence of OligoFormer. The saliency maps by gradient backpropagation and base preference maps show certain base preferences in initial and terminal region of siRNAs. Availability and implementation The source code of OligoFormer is freely available on GitHub at: https://github.com/lulab/OligoFormer. Docker image of OligoFormer is freely available on the docker hub at https://hub.docker.com/r/yilanbai/oligoformer.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王二发布了新的文献求助10
1秒前
成就糖豆完成签到,获得积分10
2秒前
2秒前
TheWay完成签到,获得积分10
2秒前
李健的小迷弟应助ooaei采纳,获得10
5秒前
量子星尘发布了新的文献求助10
6秒前
负责的澜发布了新的文献求助10
6秒前
隐形曼青应助坚强的初夏采纳,获得10
6秒前
搜集达人应助雪落采纳,获得10
7秒前
今后应助超级香之采纳,获得10
8秒前
8秒前
9秒前
周周完成签到,获得积分10
9秒前
闪闪怀柔完成签到,获得积分10
10秒前
斯文败类应助幸运星采纳,获得10
10秒前
科研通AI6应助璐璐采纳,获得10
10秒前
情怀应助科研通管家采纳,获得10
10秒前
xxfsx应助科研通管家采纳,获得10
10秒前
10秒前
爆米花应助科研通管家采纳,获得50
11秒前
雨姐科研应助科研通管家采纳,获得10
11秒前
xxfsx应助科研通管家采纳,获得10
11秒前
aldehyde应助科研通管家采纳,获得10
11秒前
Akim应助科研通管家采纳,获得10
11秒前
雨姐科研应助科研通管家采纳,获得10
11秒前
隐形曼青应助科研通管家采纳,获得10
11秒前
科目三应助科研通管家采纳,获得10
11秒前
斯文败类应助科研通管家采纳,获得10
11秒前
思源应助科研通管家采纳,获得30
12秒前
xxfsx应助科研通管家采纳,获得10
12秒前
bkagyin应助Dave采纳,获得10
12秒前
iris应助科研通管家采纳,获得10
12秒前
G哟X发布了新的文献求助10
12秒前
李爱国应助科研通管家采纳,获得10
12秒前
香蕉觅云应助XY采纳,获得10
12秒前
猪猪hero应助科研通管家采纳,获得10
12秒前
无花果应助科研通管家采纳,获得10
12秒前
12秒前
猪猪hero应助科研通管家采纳,获得10
12秒前
猪猪hero应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5528139
求助须知:如何正确求助?哪些是违规求助? 4617725
关于积分的说明 14560097
捐赠科研通 4556475
什么是DOI,文献DOI怎么找? 2496910
邀请新用户注册赠送积分活动 1477214
关于科研通互助平台的介绍 1448537