GraphPI: Efficient Protein Inference with Graph Neural Networks

推论 计算机科学 图形 人工神经网络 人工智能 计算生物学 机器学习 理论计算机科学 生物
作者
Zheng Ma,Jiazhen Chen,Lei Xin,Ali Ghodsi
出处
期刊:Journal of Proteome Research [American Chemical Society]
卷期号:23 (11): 4821-4834
标识
DOI:10.1021/acs.jproteome.3c00845
摘要

The integration of deep learning approaches in biomedical research has been transformative, enabling breakthroughs in various applications. Despite these strides, its application in protein inference is impeded by the scarcity of extensively labeled data sets, a challenge compounded by the high costs and complexities of accurate protein annotation. In this study, we introduce GraphPI, a novel framework that treats protein inference as a node classification problem. We treat proteins as interconnected nodes within a protein–peptide–PSM graph, utilizing a graph neural network-based architecture to elucidate their interrelations. To address label scarcity, we train the model on a set of unlabeled public protein data sets with pseudolabels derived from an existing protein inference algorithm, enhanced by self-training to iteratively refine labels based on confidence scores. Contrary to prevalent methodologies necessitating data set-specific training, our research illustrates that GraphPI, due to the well-normalized nature of Percolator features, exhibits universal applicability without data set-specific fine-tuning, a feature that not only mitigates the risk of overfitting but also enhances computational efficiency. Our empirical experiments reveal notable performance on various test data sets and deliver significantly reduced computation times compared to common protein inference algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
研友_8QyXr8完成签到,获得积分10
1秒前
刘露完成签到,获得积分10
2秒前
星辰大海应助一树春风采纳,获得10
2秒前
2秒前
漂亮豆芽完成签到,获得积分20
3秒前
英姑应助雾月采纳,获得10
3秒前
LYSM发布了新的文献求助30
3秒前
汉堡包应助Ahha采纳,获得10
4秒前
4秒前
4秒前
共享精神应助饕餮采纳,获得10
4秒前
大帅完成签到 ,获得积分10
4秒前
qwer完成签到,获得积分10
5秒前
吕健完成签到,获得积分10
5秒前
李超完成签到,获得积分10
5秒前
大模型应助悲凉的新筠采纳,获得10
6秒前
共享精神应助fighting采纳,获得10
7秒前
七七完成签到,获得积分10
7秒前
8秒前
玛卡巴卡发布了新的文献求助10
8秒前
9秒前
Run完成签到,获得积分10
10秒前
10秒前
10秒前
二三发布了新的文献求助10
13秒前
14秒前
14秒前
14秒前
CM发布了新的文献求助10
15秒前
在水一方应助echo1.2采纳,获得10
15秒前
Seciy完成签到 ,获得积分10
15秒前
16秒前
zz发布了新的文献求助10
16秒前
17秒前
17秒前
huenguyenvan发布了新的文献求助10
17秒前
17秒前
Ahha发布了新的文献求助10
18秒前
zhihaiyu完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5264178
求助须知:如何正确求助?哪些是违规求助? 4424447
关于积分的说明 13773074
捐赠科研通 4299589
什么是DOI,文献DOI怎么找? 2359124
邀请新用户注册赠送积分活动 1355370
关于科研通互助平台的介绍 1316708