Associations between serum metabolites and female cancers: A bidirectional two-sample mendelian randomization study

孟德尔随机化 随机化 遗传学 样品(材料) 肿瘤科 生物 内科学 医学 生理学 基因 临床试验 化学 基因型 遗传变异 色谱法
作者
Z. Alexander Cao,XiongZhi Long,LiQin Yuan
出处
期刊:The Journal of Steroid Biochemistry and Molecular Biology [Elsevier BV]
卷期号:243: 106584-106584 被引量:3
标识
DOI:10.1016/j.jsbmb.2024.106584
摘要

Female cancers, especially breast, ovarian, cervical and endometrial cancers, constitute a major threat to women's health worldwide. In view of the complex genetic background of cancers cannot be fully explained with current genetic information, we used a bidirectional two-sample mendelian randomization approach to explore the causal associations between serum metabolites and four major female cancers-breast, ovarian, cervical and endometrial cancers. We analyzed the metabolites dataset from the Canadian Longitudinal Study of Aging and cancer datasets from the 10th round of the Finngen project. Replication analyses was performed with Cancer Association Consortium and Leo's studies. Instrumental variables were analyzed using methods including the Wald ratio, inverse-variance weighted, MR-Egger, and weighted median. To ensure robustness, sensitivity analyses were performed using Cochrane's Q, Egger's intercept, MR-PRESSO, and leave-one-out methods. After meticulous analysis, we obtained levels of 3-hydroxyoleoylcarnitine, hexadecanedioate, tetradecanedioate and carnitine C14 with robust causal associations with breast cancer, levels of 5alpha-androstan-3alpha,17beta-diol monosulfate (1), androstenediol (3beta,17beta) monosulfate (1), androsterone sulfate, and 5alpha-androstan-3beta,17beta-diol disulfate causal associations with endometrial cancer. The reverse analysis showed that breast, ovarian, and endometrial cancer and survival of breast and ovarian cancer were found to have causal relationships with 8, 5, 2, 6, and 3 metabolites, respectively. These insights underscore the potential roles of specific metabolites in the etiology of female cancers, providing new biomarkers for early detection, risk stratification, and disease progression monitoring. Further research could elucidate how these metabolites influence specific pathways in cancer development, offering theoretical foundations for prevention and treatment strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
洁净春天完成签到 ,获得积分10
2秒前
2秒前
buhuidanhuixue完成签到,获得积分10
3秒前
香蕉觅云应助小郭采纳,获得10
4秒前
futianyu发布了新的文献求助10
4秒前
略略完成签到,获得积分10
5秒前
坚定尔蓝发布了新的文献求助10
7秒前
叶子发布了新的文献求助10
7秒前
9秒前
9秒前
9秒前
9秒前
hjyylab应助xx采纳,获得10
11秒前
喝水吗发布了新的文献求助50
14秒前
Jason发布了新的文献求助10
15秒前
赵维雪发布了新的文献求助10
15秒前
zivenjasek发布了新的文献求助10
19秒前
19秒前
乐乐应助千思采纳,获得10
19秒前
科研通AI5应助JM采纳,获得10
20秒前
大个应助Jason采纳,获得30
23秒前
25秒前
YunJi发布了新的文献求助10
26秒前
桃桃奶盖完成签到,获得积分10
26秒前
26秒前
科研通AI5应助zhengzheng采纳,获得10
27秒前
完美世界应助123采纳,获得10
27秒前
27秒前
29秒前
听话的白易完成签到,获得积分10
30秒前
31秒前
31秒前
Morning完成签到,获得积分10
31秒前
31秒前
YangSihan发布了新的文献求助10
33秒前
zivenjasek发布了新的文献求助10
33秒前
Morning发布了新的文献求助10
34秒前
34秒前
扁舟灬完成签到,获得积分10
35秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842655
求助须知:如何正确求助?哪些是违规求助? 3384676
关于积分的说明 10536643
捐赠科研通 3105227
什么是DOI,文献DOI怎么找? 1710094
邀请新用户注册赠送积分活动 823493
科研通“疑难数据库(出版商)”最低求助积分说明 774110