Exploring the potential of routine serological markers in predicting neurological outcomes in spinal cord injury

医学 血清学 脊髓损伤 队列 阶段(地层学) 内科学 脊髓 免疫学 精神科 抗体 古生物学 生物
作者
Jacob Matthias,Louis P. Lukas,Sarah C. Brüningk,Doris Maier,Orpheus Mach,Lukas Grassner,John L.K. Kramer,Lucie Bourguignon,Catherine R. Jutzeler
出处
期刊:Experimental Neurology [Elsevier BV]
卷期号:380: 114918-114918
标识
DOI:10.1016/j.expneurol.2024.114918
摘要

Spinal cord injury (SCI) is a rare condition with a heterogeneous presentation, making the prediction of recovery challenging. However, serological markers have been shown to be associated with severity and long-term recovery following SCI. Therefore, our investigation aimed to assess the feasibility of translating this association into a prediction of the lower extremity motor scores (LEMS) at chronic stage (52 weeks after initial injury) in patients with SCI using routine serological markers. Serological markers, assessed within the initial seven days post-injury in the observational cohort study from the Trauma Hospital Murnau underwent diverse feature engineering approaches. These involved arithmetic measurements such as mean, median, minimum, maximum, and range, as well as considerations of the frequency of marker testing and whether values fell within the normal range. To predict LEMS scores at the chronic stage, eight different regression models (including linear, tree-based, and ensemble models) were used to quantify the predictive value of serological markers relative to a baseline model that relied on the very acute LEMS score and patient age alone. The inclusion of serological markers did not improve the performance of the prediction model. The best-performing approach including serological markers achieved a mean absolute error (MAE) of 6.59 (2.14), which was equivalent to the performance of the baseline model. As an alternative approach, we trained separate models based on the LEMS observed at the very acute stage after injury. Specifically, we considered individuals with an LEMS of 0 or an LEMS exceeding zero separately. This strategy led to a mean improvement in MAE across all cohorts and models, of 1.20 (2.13). We conclude that, in our study, routine serological markers hold limited power for prediction of LEMS. However, the implementation of model stratification by the very acute LEMS markedly enhanced prediction performance. This observation supports the inclusion of clinical knowledge in the modeling of prediction tasks for SCI recovery. Additionally, it lays the path for future research to consider stratified analyses when investigating the predictive power of potential biomarkers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助白日梦想家采纳,获得10
刚刚
aqqqqq发布了新的文献求助10
1秒前
研友_VZG7GZ应助烂漫的采珊采纳,获得10
1秒前
1秒前
研友_VZG7GZ应助Leach采纳,获得10
1秒前
文光完成签到,获得积分10
2秒前
Leeon完成签到,获得积分10
3秒前
lisier发布了新的文献求助10
4秒前
echo发布了新的文献求助10
4秒前
牧紊完成签到 ,获得积分10
5秒前
Laniakea发布了新的文献求助10
6秒前
活泼溪流完成签到,获得积分10
6秒前
BIN完成签到,获得积分20
6秒前
aqqqqq完成签到,获得积分10
7秒前
共享精神应助不敢装睡采纳,获得10
7秒前
8秒前
ZZY完成签到,获得积分10
9秒前
9秒前
动听从寒完成签到,获得积分20
10秒前
努力的小明明完成签到,获得积分10
10秒前
pluto应助白日梦想家采纳,获得10
11秒前
11秒前
今后应助Supreme采纳,获得10
11秒前
专炸油条完成签到 ,获得积分10
11秒前
11秒前
lisier完成签到,获得积分10
12秒前
CodeCraft应助知还采纳,获得10
12秒前
随遇而安给YY的求助进行了留言
12秒前
12秒前
上官若男应助科研小废废采纳,获得10
14秒前
科研通AI5应助acc采纳,获得10
14秒前
科研通AI5应助舒适路人采纳,获得10
14秒前
15秒前
15秒前
万能图书馆应助神勇初瑶采纳,获得30
15秒前
kk关注了科研通微信公众号
15秒前
15秒前
Leach发布了新的文献求助10
16秒前
李爱国应助wind采纳,获得10
16秒前
deepast完成签到,获得积分10
16秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Encyclopedia of Geology (2nd Edition) 2000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786101
求助须知:如何正确求助?哪些是违规求助? 3331636
关于积分的说明 10251844
捐赠科研通 3046973
什么是DOI,文献DOI怎么找? 1672320
邀请新用户注册赠送积分活动 801243
科研通“疑难数据库(出版商)”最低求助积分说明 760059