Ultrasonic radiomics in predicting pathologic type for thyroid cancer: a preliminary study using radiomics features for predicting medullary thyroid carcinoma

无线电技术 髓腔 甲状腺癌 医学 甲状腺 甲状腺癌 病理 癌症 放射科 肿瘤科 内科学
作者
Dai Zhang,Fan Yang,Wenjing Hou,Ying Wang,Jiali Mu,Yi Li,Xi Wei
出处
期刊:Frontiers in Endocrinology [Frontiers Media SA]
卷期号:16
标识
DOI:10.3389/fendo.2025.1428888
摘要

Medullary thyroid carcinoma (MTC) is aggressive and difficult to distinguish from papillary thyroid carcinoma (PTC) using traditional ultrasound. Objective to establish a standard-based ultrasound imaging model for preoperative differentiation of MTC from PTC. A retrospective study was conducted on the case data of 213 thyroid cancer patients (82 MTC, 90 lesions; 131 PTC, 135 lesions) from the Department of Diagnostic and Therapeutic Ultrasonography, Tianjin Medical University Cancer Institute and Hospital. We constructed clinical model, radiomics model and comprehensive model by executing machine learning algorithms based on baseline clinical, pathological characteristics and ultrasound image data, respectively. The study showed that the comprehensive model observed the highest diagnostic efficacy in differentiating MTC from PTC with AUC, sensitivity, specificity, positive predictive value, negative predictive value and accuracy of 0.93, 0.88, 0.82, 0.77, 0.91, 85.8%. Delong test results showed that the comprehensive model was significantly better than the clinical model (Z=-3.791, P<0.001) and the radiomics model (Z=-2.017, P=0.044). Calibration curves indicated the comprehensive model and the radiomics model exhibited better stability than the clinical model. Decision curves analysis (DCA) demonstrated that the comprehensive model had the highest clinical net benefit. Radiomics model is effective in identifying MTC and PTC preoperatively, and the comprehensive model is better. This approach can aid in identifying the pathologic types of thyroid nodule before clinical operation, supporting personalized medicine in the decision-making process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hikari发布了新的文献求助10
刚刚
curtain完成签到,获得积分10
刚刚
小狒狒完成签到,获得积分10
刚刚
lilyvan完成签到 ,获得积分10
1秒前
喵喵肉丸发布了新的文献求助10
1秒前
1秒前
蜗牛完成签到,获得积分10
1秒前
2秒前
风风完成签到,获得积分10
2秒前
2秒前
顺心的觅荷完成签到 ,获得积分10
2秒前
西西弗斯完成签到,获得积分0
2秒前
3秒前
envy完成签到,获得积分10
3秒前
科研CY完成签到 ,获得积分10
3秒前
丘比特应助下雨天采纳,获得10
3秒前
4秒前
王雅茜发布了新的文献求助10
4秒前
米修完成签到,获得积分10
4秒前
3384955474发布了新的文献求助10
4秒前
Aiven完成签到,获得积分10
4秒前
5秒前
雪糕发布了新的文献求助10
5秒前
shelemi发布了新的文献求助10
5秒前
5秒前
吴海娇发布了新的文献求助10
5秒前
斯文败类应助科研小巨人采纳,获得10
6秒前
CodeCraft应助wdr采纳,获得10
6秒前
ll77发布了新的文献求助10
6秒前
吴邪完成签到,获得积分10
6秒前
6秒前
你好完成签到,获得积分0
6秒前
大胆的忆安完成签到 ,获得积分10
6秒前
董倍儿瘦发布了新的文献求助10
6秒前
Guide_steps完成签到,获得积分10
6秒前
行走的鱼发布了新的文献求助10
7秒前
8秒前
8秒前
slj完成签到,获得积分10
8秒前
zq发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Item Response Theory 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5427634
求助须知:如何正确求助?哪些是违规求助? 4541308
关于积分的说明 14176577
捐赠科研通 4459031
什么是DOI,文献DOI怎么找? 2445191
邀请新用户注册赠送积分活动 1436398
关于科研通互助平台的介绍 1413758