已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Automated Visceral Adipose Tissue Segmentation and Quantification from Abdominal MRI using an Enhanced U-Net and Region-growing

分割 人工智能 计算机科学 图像分割 尺度空间分割 模式识别(心理学) 噪音(视频) 计算机视觉 图像(数学)
作者
Singapogu Ravikiran B.,D. S. Misbha
标识
DOI:10.70135/seejph.vi.2544
摘要

The study focuses on enhancing the accuracy and reliability of visceral adipose tissue (VAT) segmentation and quantification from abdominal MRI images. Accurate segmentation of VAT is crucial for assessing obesity-related health risks, as traditional methods struggle with irregular shapes and varying intensities. The research utilizes a methodology consisting of three key modules: homomorphic filtering for intensity inhomogeneity correction, a U-Net architecture with attention mechanisms for primary segmentation, and a region-growing algorithm for refining segmentation. Homomorphic filtering effectively separates bias fields, enhancing image quality by transforming multiplicative artifacts into additive ones and removing them with high-pass filtering. This process ensures precise segmentation by maintaining high-frequency anatomical details. The U-Net model incorporates attention mechanisms and skip connections to focus on VAT regions, utilizing both local and global image contexts.The Combined Healthy Abdominal Organ Segmentation (CHAOS) challenge dataset and the Cancer Imaging Archive (TCIA) dataset are used to train and evaluate the model. It achieves a Dice Similarity Coefficient (DSC) of up to 0.985 on the CHAOS dataset and 0.972 on the TCIA dataset, outperforming existing methods in terms of segmentation accuracy. The region-growing algorithm further refines the segmentation by expanding VAT regions from high-confidence seed points, ensuring accurate boundary delineation and reducing noise. The study's results, evaluated using k-fold cross-validation, show that the proposed methodology significantly improves VAT segmentation efficiency, achieving a median DSC of 0.96 for the CHAOS dataset and 0.95 for the TCIA dataset in the most comprehensive experimental scenario. Comparative analysis indicates that the proposed approach outperforms other models, with higher sensitivity and specificity values, highlighting its potential for clinical applications in obesity management..
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qiu完成签到,获得积分20
刚刚
eason完成签到,获得积分10
刚刚
2秒前
苏楠完成签到 ,获得积分10
2秒前
AAA下水工王哥完成签到,获得积分10
3秒前
Mei应助178181采纳,获得10
3秒前
4秒前
Johnson完成签到 ,获得积分10
4秒前
7秒前
8秒前
饼子发布了新的文献求助10
9秒前
10秒前
打打应助FUTURE采纳,获得10
11秒前
医者仁心发布了新的文献求助10
13秒前
14秒前
15秒前
星辰大海应助sopha采纳,获得10
16秒前
海绵baobao发布了新的文献求助10
18秒前
18秒前
颖二二完成签到 ,获得积分10
19秒前
蹲坑的撕裂者完成签到,获得积分20
19秒前
陈诚发布了新的文献求助10
20秒前
20秒前
21秒前
22秒前
23秒前
思源应助空山新雨采纳,获得10
23秒前
26秒前
28秒前
hjmxb完成签到,获得积分10
29秒前
大草履虫发布了新的文献求助10
29秒前
orixero应助123采纳,获得10
29秒前
30秒前
33秒前
笨笨芯发布了新的文献求助10
33秒前
陈诚完成签到,获得积分10
35秒前
齐齐巴宾发布了新的文献求助10
37秒前
38秒前
orixero应助笨笨芯采纳,获得10
38秒前
CodeCraft应助笨笨芯采纳,获得10
38秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 490
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 460
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4060385
求助须知:如何正确求助?哪些是违规求助? 3598779
关于积分的说明 11431611
捐赠科研通 3323243
什么是DOI,文献DOI怎么找? 1827176
邀请新用户注册赠送积分活动 897842
科研通“疑难数据库(出版商)”最低求助积分说明 818656