Using XBGoost, an interpretable machine learning model, for diagnosing prostate cancer in patients with PSA < 20 ng/ml based on the PSAMR indicator

接收机工作特性 逻辑回归 特征选择 前列腺癌 医学 前列腺活检 可解释性 前列腺特异性抗原 试验装置 Lasso(编程语言) 前列腺 人工智能 机器学习 计算机科学 癌症 内科学 万维网
作者
Dengke Li,Baoyuan Chang,Qunlian Huang
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:15 (1)
标识
DOI:10.1038/s41598-025-85963-7
摘要

To create a diagnostic tool before biopsy for patients with prostate-specific antigen (PSA) levels < 20 ng/ml to minimize prostate biopsy-related discomfort and risks. Data from 655 patients who underwent transperineal prostate biopsy at the First Affiliated Hospital of Wannan Medical College from July 2021 to January 2023 were collected and analyzed. After applying the Synthetic Minority Over-sampling TEchnique class balancing on the training set, multiple machine learning models were constructed by using the Least Absolute Shrinkage and Selection Operator (LASSO) feature selection to identify the significant variables. The best-performing model was selected and evaluated through tenfold cross-validation to ensure interpretability. Finally, the performance was assessed using the test set data for validation. The age, prostate-specific antigen mass ratio (PSAMR), Prostate Imaging–Reporting and Data System, and prostate volume were selected as the variables for model construction based on the LASSO regression. The receiver operating characteristic (ROC) results for multiple models in the validation set were as follows: XGBoost: 0.93 (0.88–0.97); logistic: 0.89 (0.83–0.95); LightGBM: 0.87 (0.80–0.93); AdaBoost: 0.90 (0.85–0.96); GNB: 0.88 (0.82–0.95); CNB: 0.79 (0.71–0.87); MLP: 0.78 (0.69–0.86); and Support Vector Machine: 0.81 (0.73–0.89). XGBoost was selected as the best model and reconstructed with tenfold cross-validation on the training data, resulting in the following ROC scores: training set 0.995 (0.991–0.999), validation set 0.945 (0.885–0.997 ), and test set 0.920 (0.868–0.972). The Kolmogorov–Smirnov curve, calibration curve and learning curve yielded positive results; The decision curve demonstrates that patients with threshold probabilities ranging from 10 to 95% can benefit from this model. We developed an XGBoost machine learning model based on the PSAMR indicator and interpreted it using the SHapley Additive exPlanations method. The model offered a high-performance non-invasive technique to diagnose prostate cancer in patients with PSA levels < 20 ng/ml.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hhh2018687完成签到,获得积分10
2秒前
兔兔完成签到 ,获得积分10
2秒前
HLT完成签到 ,获得积分10
6秒前
zz完成签到 ,获得积分0
9秒前
MOOTEA完成签到,获得积分10
12秒前
尘染完成签到 ,获得积分10
17秒前
zhang完成签到 ,获得积分10
18秒前
Jeremy637完成签到 ,获得积分10
20秒前
乐观的星月完成签到 ,获得积分10
23秒前
Snow完成签到 ,获得积分10
25秒前
豆腐青菜雨完成签到 ,获得积分10
28秒前
上善若水呦完成签到 ,获得积分10
29秒前
cai完成签到 ,获得积分10
33秒前
37秒前
coolkid应助科研通管家采纳,获得10
37秒前
coolkid应助科研通管家采纳,获得10
37秒前
joeqin完成签到,获得积分10
37秒前
coolkid应助科研通管家采纳,获得10
37秒前
37秒前
37秒前
我要读博士完成签到 ,获得积分10
38秒前
雪飞杨完成签到 ,获得积分10
40秒前
WSYang完成签到,获得积分10
40秒前
qjd发布了新的文献求助10
40秒前
白云发布了新的文献求助10
40秒前
qjd完成签到,获得积分10
47秒前
lulu完成签到 ,获得积分10
1分钟前
liuyq0501完成签到,获得积分0
1分钟前
坚强觅珍完成签到 ,获得积分10
1分钟前
Kkk完成签到 ,获得积分10
1分钟前
wefor完成签到 ,获得积分10
1分钟前
songyu完成签到,获得积分10
1分钟前
sowhat完成签到 ,获得积分10
1分钟前
even完成签到 ,获得积分10
1分钟前
甜美早晨完成签到 ,获得积分10
1分钟前
Lyanph完成签到 ,获得积分10
1分钟前
甜甜圈完成签到 ,获得积分10
1分钟前
嗯嗯嗯哦哦哦完成签到 ,获得积分10
1分钟前
pengyh8完成签到 ,获得积分10
1分钟前
Shicheng完成签到,获得积分10
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3946199
求助须知:如何正确求助?哪些是违规求助? 3491114
关于积分的说明 11058987
捐赠科研通 3222060
什么是DOI,文献DOI怎么找? 1780807
邀请新用户注册赠送积分活动 865846
科研通“疑难数据库(出版商)”最低求助积分说明 800083