Quantum machine learning with Adaptive Boson Sampling via post-selection

选择(遗传算法) 计算机科学 量子 量子机器学习 玻色子 采样(信号处理) 人工智能 机器学习 物理 量子计算机 粒子物理学 量子力学 电信 探测器
作者
Francesco Hoch,Eugenio Caruccio,Giovanni Rodari,Tommaso Francalanci,Alessia Suprano,Taira Giordani,Gonzalo Carvacho,Nicolò Spagnolo,Seid Koudia,Massimiliano Proietti,Carlo Liorni,Filippo Cerocchi,Riccardo Albiero,Niki Di Giano,Marco Gardina,Francesco Ceccarelli,Giacomo Corrielli,Ulysse Chabaud,Roberto Osellame,Massimiliano Dispenza
出处
期刊:Nature Communications [Nature Portfolio]
卷期号:16 (1)
标识
DOI:10.1038/s41467-025-55877-z
摘要

The implementation of large-scale universal quantum computation represents a challenging and ambitious task on the road to quantum processing of information. In recent years, an intermediate approach has been pursued to demonstrate quantum computational advantage via non-universal computational models. A relevant example for photonic platforms has been provided by the Boson Sampling paradigm and its variants, which are known to be computationally hard while requiring at the same time only the manipulation of the generated photonic resources via linear optics and detection. Beside quantum computational advantage demonstrations, a promising direction towards possibly useful applications can be found in the field of quantum machine learning, considering the currently almost unexplored intermediate scenario between non-adaptive linear optics and universal photonic quantum computation. Here, we report the experimental implementation of quantum machine learning protocols by adding adaptivity via post-selection to a Boson Sampling platform based on universal programmable photonic circuits fabricated via femtosecond laser writing. Our experimental results demonstrate that Adaptive Boson Sampling is a viable route towards dimension-enhanced quantum machine learning with linear optical devices. Extending quantum photonics' capabilities from simple linear-optics-based schemes to universal quantum computing presents several challenges, but intermediate regimes with some degree of adaptivity might already bring practical advantages. Here, the authors experimentally emulate an adaptive Boson Sampling scheme using post-selection, and apply it to a data classification task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助七七采纳,获得10
刚刚
科研通AI5应助sunrise采纳,获得20
刚刚
美少女完成签到,获得积分10
刚刚
刚刚
2秒前
FashionBoy应助杨知意采纳,获得10
2秒前
木刻青、发布了新的文献求助10
2秒前
cy发布了新的文献求助10
2秒前
3秒前
可乐完成签到,获得积分10
4秒前
myjf完成签到,获得积分10
4秒前
5秒前
5秒前
缥缈太清完成签到,获得积分10
5秒前
慕青应助朴实小蚂蚁采纳,获得10
5秒前
6秒前
6秒前
6秒前
卡卡西应助帕芙芙采纳,获得20
7秒前
龙傲天完成签到 ,获得积分20
8秒前
大头粽发布了新的文献求助10
8秒前
言笑晏晏完成签到 ,获得积分10
8秒前
9秒前
10秒前
斑马发布了新的文献求助10
10秒前
11秒前
NWAFUZH发布了新的文献求助10
11秒前
zhj发布了新的文献求助10
12秒前
ld发布了新的文献求助10
12秒前
英姑应助Melody采纳,获得10
12秒前
12秒前
12秒前
Hello应助糊涂的霸采纳,获得10
13秒前
13秒前
爱科研的龙完成签到,获得积分10
13秒前
YSSS完成签到,获得积分10
14秒前
14秒前
妲己在此发布了新的文献求助10
14秒前
14秒前
15秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3818366
求助须知:如何正确求助?哪些是违规求助? 3361517
关于积分的说明 10413139
捐赠科研通 3079768
什么是DOI,文献DOI怎么找? 1692743
邀请新用户注册赠送积分活动 814539
科研通“疑难数据库(出版商)”最低求助积分说明 768193