Attention-Based Interpretable Multiscale Graph Neural Network for MOFs

计算机科学 图形 人工神经网络 人工智能 数据科学 机器学习 数据挖掘 理论计算机科学
作者
Lujun Li,Haibin Yu,Zhuo Wang
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
卷期号:21 (3): 1369-1381 被引量:3
标识
DOI:10.1021/acs.jctc.4c01525
摘要

Metal-organic frameworks (MOFs) hold great potential in gas separation and storage. Graph neural networks (GNNs) have proven effective in exploring structure-property relationships and discovering new MOF structures. Unlike molecular graphs, crystal graphs must consider the periodicity and patterns. MOFs' specific features at different scales, such as covalent bonds, functional groups, and global structures, influenced by interatomic interactions, exert varying degrees of impact on gas adsorption or selectivity. Moreover, redundant interatomic interactions hinder training accuracy, leading to overfitting. This research introduces a construction method for multiscale crystal graphs, which considers specific features at different scales by decomposing the crystal graph into multiple subgraphs based on interatomic interactions within varying distance ranges. Additionally, it takes into account the global structure of the crystal by encoding the periodic patterns of the unit cells. We propose MSAIGNN, a multiscale atomic interaction graph neural network with self-attention-based graph pooling mechanism, which incorporates three-body bond angle information, accounts for structural features at different scales, and minimizes interference from redundant interactions. Compared with traditional methods, MSAIGNN demonstrates higher prediction accuracy in assessing single-component adsorption, gas separation, and structural features. Visualization of attention scores confirms effective learning of structural features at different scales, highlighting MSAIGNN's interpretability. Overall, MSAIGNN offers a novel, efficient, multilayered, and interpretable approach for property prediction of complex porous crystal structures like MOFs using deep learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
fossick2010完成签到 ,获得积分10
4秒前
爆米花应助好运莲莲采纳,获得10
4秒前
tikka完成签到,获得积分10
6秒前
Owen应助Jodie采纳,获得10
6秒前
8秒前
共享精神应助Bonnienuit采纳,获得10
8秒前
立华奏完成签到,获得积分10
9秒前
15秒前
15秒前
逗乐完成签到,获得积分10
17秒前
科研通AI6应助zzznznnn采纳,获得10
17秒前
19秒前
wjh发布了新的文献求助10
20秒前
着急的冬寒完成签到 ,获得积分10
24秒前
云鹏完成签到,获得积分10
25秒前
恒星的恒心完成签到 ,获得积分10
27秒前
28秒前
28秒前
33秒前
Jasper应助坚强孤容采纳,获得10
35秒前
希望天下0贩的0应助春竹采纳,获得10
36秒前
wanci应助冷静伟诚采纳,获得10
36秒前
秋纳瑞完成签到 ,获得积分10
37秒前
39秒前
伶俐的颤发布了新的文献求助10
44秒前
46秒前
46秒前
彭于晏应助Megan采纳,获得10
48秒前
49秒前
吃猫的鱼发布了新的文献求助10
52秒前
Jodie发布了新的文献求助10
52秒前
冷静的手套完成签到 ,获得积分10
53秒前
56秒前
安静的幻竹完成签到,获得积分10
56秒前
pluto应助哭泣乌采纳,获得10
59秒前
困困包发布了新的文献求助10
1分钟前
许可991127完成签到,获得积分10
1分钟前
guguhuhu完成签到,获得积分10
1分钟前
strawberry完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5558022
求助须知:如何正确求助?哪些是违规求助? 4642970
关于积分的说明 14670064
捐赠科研通 4584444
什么是DOI,文献DOI怎么找? 2514849
邀请新用户注册赠送积分活动 1489006
关于科研通互助平台的介绍 1459630