计算机科学
图形
人工神经网络
人工智能
数据科学
机器学习
数据挖掘
理论计算机科学
作者
Lujun Li,Haibin Yu,Zhuo Wang
标识
DOI:10.1021/acs.jctc.4c01525
摘要
Metal-organic frameworks (MOFs) hold great potential in gas separation and storage. Graph neural networks (GNNs) have proven effective in exploring structure-property relationships and discovering new MOF structures. Unlike molecular graphs, crystal graphs must consider the periodicity and patterns. MOFs' specific features at different scales, such as covalent bonds, functional groups, and global structures, influenced by interatomic interactions, exert varying degrees of impact on gas adsorption or selectivity. Moreover, redundant interatomic interactions hinder training accuracy, leading to overfitting. This research introduces a construction method for multiscale crystal graphs, which considers specific features at different scales by decomposing the crystal graph into multiple subgraphs based on interatomic interactions within varying distance ranges. Additionally, it takes into account the global structure of the crystal by encoding the periodic patterns of the unit cells. We propose MSAIGNN, a multiscale atomic interaction graph neural network with self-attention-based graph pooling mechanism, which incorporates three-body bond angle information, accounts for structural features at different scales, and minimizes interference from redundant interactions. Compared with traditional methods, MSAIGNN demonstrates higher prediction accuracy in assessing single-component adsorption, gas separation, and structural features. Visualization of attention scores confirms effective learning of structural features at different scales, highlighting MSAIGNN's interpretability. Overall, MSAIGNN offers a novel, efficient, multilayered, and interpretable approach for property prediction of complex porous crystal structures like MOFs using deep learning.
科研通智能强力驱动
Strongly Powered by AbleSci AI