反向动力学
弹道
计算机科学
运动学
控制理论(社会学)
前馈
雅可比矩阵与行列式
MATLAB语言
最优控制
自由度(物理和化学)
PID控制器
控制(管理)
控制工程
机器人
人工智能
数学
数学优化
工程类
温度控制
物理
量子力学
经典力学
天文
应用数学
操作系统
作者
Ahmed Sedky,Nader A. Mansour,Lamiaa Z. Mohamed,Mahmoud Magdy
摘要
ABSTRACT Background Neurosurgery demands high precision, and robotic‐assisted systems are increasingly employed to enhance surgical outcomes. This study focuses on a hybrid robotic‐assisted system for neurosurgery, addressing forward and inverse kinematics, Jacobian matrices, and system singularities. Methods The system is simulated using MATLAB/Simscape Multibody to achieve accurate kinematic and dynamic representations. An inverse kinematics framework was developed for generating and validating a circular trajectory at the end‐effector tip. Two control strategies are compared: traditional active joint PID control and combined trajectory feedback plus feedforward control. Results The combined control strategy significantly improves performance, reducing the maximum absolute error of each output by an average of 46.5% and the mean square error by 50.31% under optimal conditions. Conclusion The findings highlight the potential of trajectory feedback and feedforward control to enhance the precision and reliability of robotic‐assisted neurosurgical procedures.
科研通智能强力驱动
Strongly Powered by AbleSci AI