亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Machine Learning Approach for the Prediction of Surface Roughness Using the Tool Vibration Data in Turning Operation

表面粗糙度 振动 计算机科学 表面光洁度 曲面(拓扑) 机器学习 人工智能 机械工程 材料科学 声学 工程类 物理 数学 复合材料 几何学
作者
Sonia Safeer,Anwar Sadique,D Navaneeth
出处
期刊:SAE technical paper series 卷期号:1 被引量:1
标识
DOI:10.4271/2025-28-0152
摘要

<div class="section abstract"><div class="htmlview paragraph">Surface roughness is a key factor in different machining processes and plays an important role in ergonomics, assembly process, wear and fatigue life of components. Other factors like functionality, performance and durability of parts are also affected by surface roughness. Although maintaining an optimum surface roughness is a major challenge in many manufacturing industries. Surface roughness during machining depends upon machining parameters such as tool geometry, feed rate, depth of cut, rotational speed, lubrication, tool wear, etc. Tool vibrations during machining also have significant influence in surface roughness. In this work an attempt is made to predict the surface roughness of machined components made by the turning process by using machine learning of tool vibration signals. By varying different machining parameters and keeping other tooling and material properties same, a range of surface roughness values can be obtained. For each condition, corresponding tool vibration signals were recorded. Our experimental setup involves a vibration data collector which is used for recording vibration signals generated during the turning operation. The collected data preprocessed and categorized into training and test sets. Various machine learning regression techniques including Linear Regression, Ridge Regression, Support Vector Regression (SVR), Decision Tree Regression, Random Forest Regression, Gradient Boosting Regression, K-Nearest Neighbors Regression (KNN), and Neural Network Regression were used to predict the surface roughness. The study highlights the importance of feature extraction and model selection in achieving accurate and reliable surface roughness predictions, ultimately contributing to enhanced machining process control and product quality.</div></div>

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夷则十五发布了新的文献求助10
3秒前
du发布了新的文献求助10
14秒前
夷则十五完成签到,获得积分20
22秒前
柚子想吃橘子完成签到,获得积分10
24秒前
26秒前
ZXneuro完成签到,获得积分10
27秒前
123发布了新的文献求助10
27秒前
阿圆发布了新的文献求助10
30秒前
orixero应助科研通管家采纳,获得10
32秒前
null应助科研通管家采纳,获得10
32秒前
李爱国应助科研通管家采纳,获得10
32秒前
null应助科研通管家采纳,获得10
32秒前
科研通AI2S应助科研通管家采纳,获得10
32秒前
null应助科研通管家采纳,获得10
32秒前
null应助科研通管家采纳,获得10
32秒前
32秒前
SciGPT应助du采纳,获得10
35秒前
crane完成签到,获得积分10
56秒前
Upupgrowth完成签到 ,获得积分10
56秒前
1分钟前
1分钟前
du发布了新的文献求助10
1分钟前
1分钟前
上官若男应助du采纳,获得10
1分钟前
123完成签到,获得积分10
1分钟前
华仔应助尊敬的芷卉采纳,获得10
1分钟前
咕哒猫应助尊敬的芷卉采纳,获得10
1分钟前
CipherSage应助尊敬的芷卉采纳,获得10
1分钟前
搜集达人应助尊敬的芷卉采纳,获得10
1分钟前
咕哒猫应助尊敬的芷卉采纳,获得10
1分钟前
咕哒猫应助尊敬的芷卉采纳,获得10
1分钟前
1分钟前
2分钟前
桐桐应助神医magical采纳,获得10
2分钟前
CodeCraft应助现代火车采纳,获得10
2分钟前
ZJ完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
华仔应助尊敬的芷卉采纳,获得10
2分钟前
DaMin32767发布了新的文献求助10
2分钟前
李健应助尊敬的芷卉采纳,获得20
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Bone Marrow Immunohistochemistry 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5628118
求助须知:如何正确求助?哪些是违规求助? 4715649
关于积分的说明 14963643
捐赠科研通 4785789
什么是DOI,文献DOI怎么找? 2555335
邀请新用户注册赠送积分活动 1516649
关于科研通互助平台的介绍 1477184