已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep learning reveals pathology-confirmed neuroimaging signatures in Alzheimer’s, vascular and Lewy body dementias

神经病理学 神经影像学 路易体 痴呆 病理 血管性痴呆 医学 白质 海马硬化 心理学 神经科学 疾病 磁共振成像 颞叶 放射科 癫痫
作者
Di Wang,Nicolas Honnorat,Jon B. Toledo,Karl Li,Sokratis Charisis,Tanweer Rashid,Anoop Benet Nirmala,Sachintha Ransara Brandigampala,Mariam Mojtabai,Sudha Seshadri,Mohamad Habes
出处
期刊:Brain [Oxford University Press]
被引量:2
标识
DOI:10.1093/brain/awae388
摘要

Abstract Concurrent neurodegenerative and vascular pathologies pose a diagnostic challenge in the clinical setting, with histopathology remaining the definitive modality for dementia-type diagnosis. To address this clinical challenge, we introduce a neuropathology-based, data-driven, multi-label deep learning framework to identify and quantify in-vivo biomarkers for Alzheimer's disease (AD), vascular dementia (VD), and Lewy body dementia (LBD) using antemortem T1-weighted MRI scans of 423 demented and 361 control participants from NACC and ADNI datasets. Based on the best-performing deep learning model, explainable heatmaps are extracted to visualize disease patterns, and the novel Deep Signature of Pathology Atrophy REcognition (DeepSPARE) indices are developed, where a higher DeepSPARE score indicates more brain alterations associated with that specific pathology. A substantial discrepancy in clinical and neuropathology diagnosis was observed in the demented patients: 71% of them had more than one pathology, but 67% of them were clinically diagnosed as AD only. Based on these neuropathology diagnoses and leveraging cross-validation principles, the deep learning model achieved the best performance with a balanced accuracy of 0.844, 0.839, and 0.623 for AD, VD, and LBD, respectively, and was used to generate the explainable deep-learning heatmaps and DeepSPARE indices. The explainable deep-learning heatmaps revealed distinct neuroimaging brain alteration patterns for each pathology: the AD heatmap highlighted bilateral hippocampal regions, the VD heatmap emphasized white matter regions, and the LBD heatmap exposed occipital alterations. The DeepSPARE indices were validated by examining their associations with cognitive testing, neuropathological, and neuroimaging measures using linear mixed-effects models. The DeepSPARE-AD index was associated with MMSE, Trail B, memory, PFDR-adjustedhippocampal volume, Braak stages, CERAD scores, and Thal phases (PFDR-adjusted < 0.05). The DeepSPARE-VD index was associated with white matter hyperintensity volume and cerebral amyloid angiopathy (PFDR-adjusted < 0.001). The DeepSPARE-LBD index was associated with Lewy body stages (PFDR-adjusted < 0.05). The findings were replicated in an out-of-sample ADNI dataset by testing associations with cognitive, imaging, plasma, and CSF measures. CSF and plasma pTau181 were significantly associated with DeepSPARE-AD in the AD/MCIΑβ+ group (PFDR-adjusted < 0.001), and CSF α-synuclein was associated solely with DeepSPARE-LBD (PFDR-adjusted = 0.036). Overall, these findings demonstrate the advantages of our innovative deep-learning framework in detecting antemortem neuroimaging signatures linked to different pathologies. The newly deep learning-derived DeepSPARE indices are precise, pathology-sensitive, and single-valued noninvasive neuroimaging metrics, bridging the traditional widely available in-vivo T1 imaging with histopathology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lzxucn完成签到,获得积分10
1秒前
Bob发布了新的文献求助10
1秒前
JamesPei应助杨启军采纳,获得10
3秒前
3秒前
yuzhecheng关注了科研通微信公众号
4秒前
4秒前
6秒前
QuIT发布了新的文献求助10
6秒前
完美世界应助Moo5_zzZ采纳,获得30
7秒前
香蕉觅云应助吉吉森林采纳,获得10
7秒前
8秒前
曹杨磊发布了新的文献求助10
9秒前
无限寻雪发布了新的文献求助10
11秒前
情怀应助吐泡泡的奇异果采纳,获得10
12秒前
冰棒比冰冰完成签到 ,获得积分10
12秒前
胡指导发布了新的文献求助30
13秒前
渭阳野士完成签到,获得积分10
15秒前
17秒前
胡指导完成签到,获得积分20
20秒前
21秒前
科研通AI5应助曹杨磊采纳,获得10
21秒前
华仔应助Xxxw采纳,获得10
22秒前
22秒前
睡眠不足发布了新的文献求助10
23秒前
赘婿应助论英雄采纳,获得30
23秒前
lmplzzp完成签到,获得积分10
23秒前
jjx1005完成签到 ,获得积分10
23秒前
24秒前
24秒前
大海发布了新的文献求助10
26秒前
26秒前
27秒前
yuzhecheng发布了新的文献求助10
27秒前
leaolf应助巫马尔槐采纳,获得10
29秒前
30秒前
30秒前
希望天下0贩的0应助晓倩采纳,获得10
31秒前
科研白白发布了新的文献求助10
31秒前
kento发布了新的文献求助50
32秒前
35秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
中国减肥产品行业市场发展现状及前景趋势与投资分析研究报告(2025-2030版) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4512073
求助须知:如何正确求助?哪些是违规求助? 3957530
关于积分的说明 12268884
捐赠科研通 3618926
什么是DOI,文献DOI怎么找? 1991421
邀请新用户注册赠送积分活动 1027642
科研通“疑难数据库(出版商)”最低求助积分说明 918946