A systematic review of Automated prediction of sudden cardiac deathusing ECG signals

人工智能 机器学习 分类器(UML) 工程类 计算机科学
作者
Preeti P. Ghasad,Jagath V S Vegivada,Vipin Kamble,Ankit A. Bhurane,N. Krishna Santosh,Manish Sharma,Ru San Tan,U. Rajendra Acharya
出处
期刊:Physiological Measurement [IOP Publishing]
被引量:2
标识
DOI:10.1088/1361-6579/ad9ce5
摘要

Sudden Cardiac Death (SCD) stands as a life-threatening cardiac event capable of swiftly claiming lives. Researchers have devised numerous models aimed at automatically predicting SCD through a combination of diverse feature extraction techniques and classifiers. We did a rigorous review of research publications ranging from 2011 to 2023, with a specific focus on the automated prediction of SCD, a growing health concern on a global scale. Over the past two decades, Machine Learning (ML) techniques have emerged and evolved for this purpose. Notably, since 2021, Deep Learning (DL) technology has also been incorporated into automatically predicting SCD. This literature review comprehensively analyzes ML and DL models employed in predicting SCD. The analysis yielded valuable insights into the fundamental structure of cardiac fatalities, extracting relevant characteristics from ECG and HRV signals, using databases, and evaluating classifier performance. The review offers a succinct yet thorough examination of automated SCD prediction methodologies, emphasizing current constraints and underscoring the necessity for further advancements. It serves as a valuable resource, providing valuable insights and outlining potential research directions for aspiring scholars in the domain of SCD prediction. These automated methodologies have demonstrated the potential to achieve remarkable prediction accuracy, reaching levels as high as 97%, and can forecast SCD events with a lead time of 30-70 minutes. Despite these promising outcomes, the quest for even greater accuracy and reliability persists. While ML and DL methodologies have shown great promise, their performance is intrinsically linked to the volume of training data available. Most predictive models rely on small-scale databases, raising concerns about their applicability in real-world scenarios. Furthermore, these models predominantly utilize electrocardiogram and heart rate variability signals, often overlooking the potential contributions of other physiological signals. Developing real-time, clinically applicable models also represents a critical avenue for further exploration in this field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
Faramita完成签到,获得积分10
2秒前
田様应助hql_sdu采纳,获得10
2秒前
3秒前
刘雄丽完成签到,获得积分10
3秒前
爱笑擎完成签到,获得积分10
5秒前
yuayuaR发布了新的文献求助10
5秒前
成就梦松发布了新的文献求助10
6秒前
liulongjun发布了新的文献求助10
7秒前
vocrious发布了新的文献求助10
7秒前
7秒前
布曲发布了新的文献求助10
8秒前
8秒前
8秒前
SciGPT应助科研小白采纳,获得10
8秒前
9秒前
11秒前
123完成签到,获得积分10
11秒前
13秒前
小章发布了新的文献求助10
13秒前
14秒前
15秒前
fengquan发布了新的文献求助10
15秒前
electricelectric应助GTY采纳,获得30
16秒前
科研通AI6应助淡蓝色采纳,获得10
17秒前
洪森发布了新的文献求助50
17秒前
17秒前
17秒前
小二郎应助铁慧采纳,获得30
17秒前
李健的小迷弟应助yuayuaR采纳,获得10
18秒前
19秒前
人美心善大野驴完成签到 ,获得积分10
20秒前
20秒前
pandary完成签到,获得积分10
21秒前
Faramita关注了科研通微信公众号
22秒前
天天快乐应助玩泥巴的hh采纳,获得10
22秒前
AYJ完成签到,获得积分10
23秒前
Wuzhou2完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5355086
求助须知:如何正确求助?哪些是违规求助? 4487060
关于积分的说明 13968836
捐赠科研通 4387749
什么是DOI,文献DOI怎么找? 2410553
邀请新用户注册赠送积分活动 1403023
关于科研通互助平台的介绍 1376743