CNN-CBAM-LSTM: Enhancing Stock Return Prediction Through Long and Short Information Mining in Stock Prediction

库存(枪支) 人工智能 股市预测 计算机科学 计量经济学 数据挖掘 机器学习 股票市场 经济 工程类 历史 机械工程 背景(考古学) 考古
作者
Peijie Ye,Han Zhang,Xi Zhou
出处
期刊:Mathematics [Multidisciplinary Digital Publishing Institute]
卷期号:12 (23): 3738-3738
标识
DOI:10.3390/math12233738
摘要

Deep learning, a foundational technology in artificial intelligence, facilitates the identification of complex associations between stock prices and various influential factors through comprehensive data analysis. Stock price data exhibits unique time-series characteristics; models emphasizing long-term data may miss short-term fluctuations, while those focusing solely on short-term data may not capture cyclical trends. Existing models that integrate long short-term memory (LSTM) and convolutional neural networks (CNNs) face limitations in capturing both long- and short-term dependencies due to LSTM’s gated transmission mechanism and CNNs’ limited receptive field. This study introduces an innovative deep learning model, CNN-CBAM-LSTM, which integrates the convolutional block attention module (CBAM) to enhance the extraction of both long- and short-term features. The model’s performance is assessed using the Australian Standard & Poor’s 200 Index (AS51), showing improvement over traditional models across metrics such as RMSE, MAE, R2, and RETURN. To further confirm its robustness and generalizability, Diebold–Mariano (DM) tests and model confidence set experiments are conducted, with results indicating the consistently high performance of the CNN-CBAM-LSTM model. Additional tests on six globally recognized stock indices reinforce the model’s predictive strength and adaptability, establishing it as a reliable tool for forecasting in the stock market.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
于子涵发布了新的文献求助10
3秒前
hh发布了新的文献求助10
3秒前
沐1217完成签到,获得积分10
4秒前
5秒前
scabbard24发布了新的文献求助50
5秒前
ab完成签到,获得积分10
7秒前
8秒前
11秒前
12秒前
张张张xxx完成签到,获得积分10
13秒前
14秒前
liuttinn完成签到,获得积分10
15秒前
15秒前
陈海东完成签到,获得积分10
16秒前
眯眯眼的衬衫应助Chem采纳,获得10
17秒前
渔渔完成签到 ,获得积分10
17秒前
窝窝发布了新的文献求助10
18秒前
18秒前
汉堡包应助噗噗个噗采纳,获得10
18秒前
纯情的汉堡关注了科研通微信公众号
18秒前
研友_huang发布了新的文献求助10
19秒前
20秒前
22秒前
852应助andrele采纳,获得20
22秒前
guijunmola完成签到,获得积分10
22秒前
美好斓发布了新的文献求助30
23秒前
果汁发布了新的文献求助10
24秒前
窝窝完成签到,获得积分10
25秒前
25秒前
呓语完成签到,获得积分10
27秒前
27秒前
lilei完成签到 ,获得积分10
27秒前
29秒前
31秒前
32秒前
岳莹晓完成签到 ,获得积分10
33秒前
34秒前
34秒前
科研通AI2S应助cyw_1037405062采纳,获得10
35秒前
高分求助中
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
Multi-omics analysis reveals the molecular mechanisms and therapeutic targets in high altitude polycythemia 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3899758
求助须知:如何正确求助?哪些是违规求助? 3444367
关于积分的说明 10834793
捐赠科研通 3169337
什么是DOI,文献DOI怎么找? 1751092
邀请新用户注册赠送积分活动 846457
科研通“疑难数据库(出版商)”最低求助积分说明 789206