FedMix: Mixed Supervised Federated Learning for Medical Image Segmentation

计算机科学 边距(机器学习) 跳跃式监视 人工智能 判别式 分割 图像(数学) 班级(哲学) 编码(集合论) 特征(语言学) 最小边界框 机器学习 集合(抽象数据类型) 图像分割 模式识别(心理学) 哲学 程序设计语言 语言学
作者
Jeffry Wicaksana,Zengqiang Yan,Dong Zhang,Xijie Huang,Huimin Wu,Xin Yang,Kwang‐Ting Cheng
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (7): 1955-1968 被引量:27
标识
DOI:10.1109/tmi.2022.3233405
摘要

The purpose of federated learning is to enable multiple clients to jointly train a machine learning model without sharing data. However, the existing methods for training an image segmentation model have been based on an unrealistic assumption that the training set for each local client is annotated in a similar fashion and thus follows the same image supervision level. To relax this assumption, in this work, we propose a label-agnostic unified federated learning framework, named FedMix, for medical image segmentation based on mixed image labels. In FedMix, each client updates the federated model by integrating and effectively making use of all available labeled data ranging from strong pixel-level labels, weak bounding box labels, to weakest image-level class labels. Based on these local models, we further propose an adaptive weight assignment procedure across local clients, where each client learns an aggregation weight during the global model update. Compared to the existing methods, FedMix not only breaks through the constraint of a single level of image supervision but also can dynamically adjust the aggregation weight of each local client, achieving rich yet discriminative feature representations. Experimental results on multiple publicly-available datasets validate that the proposed FedMix outperforms the state-of-the-art methods by a large margin. In addition, we demonstrate through experiments that FedMix is extendable to multi-class medical image segmentation and much more feasible in clinical scenarios. The code is available at: https://github.com/Jwicaksana/FedMix.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NovermberRain完成签到,获得积分10
刚刚
Nn发布了新的文献求助10
刚刚
1秒前
微笑的人形立牌完成签到,获得积分10
2秒前
xxx完成签到,获得积分10
3秒前
芽衣完成签到 ,获得积分10
3秒前
torch132完成签到,获得积分10
4秒前
科研长颈鹿完成签到,获得积分10
5秒前
学术蝗虫完成签到,获得积分10
5秒前
陌回完成签到,获得积分10
5秒前
lmm完成签到,获得积分10
5秒前
xiasijian发布了新的文献求助10
5秒前
pito完成签到,获得积分20
6秒前
7秒前
可爱的函函应助风中夜天采纳,获得10
7秒前
一枚研究僧完成签到,获得积分0
7秒前
英俊的铭应助科研通管家采纳,获得10
7秒前
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
情怀应助科研通管家采纳,获得10
7秒前
酷波er应助科研通管家采纳,获得10
7秒前
丘比特应助科研通管家采纳,获得10
7秒前
窦房结应助科研通管家采纳,获得10
8秒前
诸葛御风应助科研通管家采纳,获得20
8秒前
小蘑菇应助科研通管家采纳,获得10
8秒前
TT应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
共享精神应助科研通管家采纳,获得10
8秒前
爆米花应助科研通管家采纳,获得10
8秒前
CHDB应助科研通管家采纳,获得10
8秒前
思源应助科研通管家采纳,获得10
8秒前
mryun完成签到,获得积分10
8秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
英姑应助科研通管家采纳,获得10
9秒前
首席或雪月完成签到,获得积分10
10秒前
时米米米完成签到,获得积分10
10秒前
xiasijian完成签到,获得积分10
13秒前
14秒前
歪歪yyyyc完成签到,获得积分10
16秒前
彭于晏应助kk星采纳,获得10
18秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801141
求助须知:如何正确求助?哪些是违规求助? 3346790
关于积分的说明 10330402
捐赠科研通 3063155
什么是DOI,文献DOI怎么找? 1681388
邀请新用户注册赠送积分活动 807549
科研通“疑难数据库(出版商)”最低求助积分说明 763728