Generative Adversarial Networks for Face Generation: A Survey

计算机科学 生成语法 光学(聚焦) 对抗制 面子(社会学概念) 人工智能 面部表情 钥匙(锁) 开放式研究 机器学习 数据科学 万维网 计算机安全 光学 社会学 物理 社会科学
作者
Amina Kammoun,Rim Slama,Hedi Tabia,Tarek Ouni,Mohamed Abid
出处
期刊:ACM Computing Surveys [Association for Computing Machinery]
卷期号:55 (5): 1-37 被引量:68
标识
DOI:10.1145/3527850
摘要

Recently, generative adversarial networks (GANs) have progressed enormously, which makes them able to learn complex data distributions in particular faces. More and more efficient GAN architectures have been designed and proposed to learn the different variations of faces, such as cross pose, age, expression, and style. These GAN-based approaches need to be reviewed, discussed, and categorized in terms of architectures, applications, and metrics. Several reviews that focus on the use and advances of GAN in general have been proposed. However, to the best of our knowledge, the GAN models applied to the face, which we call facial GANs , have never been addressed. In this article, we review facial GANs and their different applications. We mainly focus on architectures, problems, and performance evaluation with respect to each application and used datasets. More precisely, we review the progress of architectures and discuss the contributions and limits of each. Then, we expose the encountered problems of facial GANs and propose solutions to handle them. Additionally, as GAN evaluation has become a notable current defiance, we investigate the state-of-the-art quantitative and qualitative evaluation metrics and their applications. We conclude this work with a discussion on the face generation challenges and propose open research issues.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
科研通AI5应助科研大白采纳,获得10
1秒前
4秒前
5秒前
jiwen完成签到,获得积分10
7秒前
8秒前
11秒前
huangjing发布了新的文献求助10
12秒前
13秒前
科研大白完成签到,获得积分20
14秒前
16秒前
我是老大应助罗布林卡采纳,获得10
17秒前
23秒前
李堃完成签到,获得积分10
24秒前
28秒前
29秒前
田様应助姜程璐采纳,获得10
30秒前
汉堡包应助救驾来迟采纳,获得50
31秒前
32秒前
FashionBoy应助若有光采纳,获得10
32秒前
小青梅发布了新的文献求助10
35秒前
完美世界应助而已采纳,获得10
35秒前
精明芷巧完成签到 ,获得积分10
36秒前
天行马发布了新的文献求助10
38秒前
Hello应助lixiang采纳,获得10
39秒前
39秒前
39秒前
41秒前
lbt发布了新的文献求助10
42秒前
桐桐应助ref:rain采纳,获得10
42秒前
你好好好好完成签到,获得积分10
42秒前
喵喵完成签到 ,获得积分10
42秒前
qianmo发布了新的文献求助10
44秒前
45秒前
47秒前
sitara发布了新的文献求助10
51秒前
51秒前
53秒前
春风沂水发布了新的文献求助10
57秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777470
求助须知:如何正确求助?哪些是违规求助? 3322795
关于积分的说明 10211897
捐赠科研通 3038215
什么是DOI,文献DOI怎么找? 1667178
邀请新用户注册赠送积分活动 797990
科研通“疑难数据库(出版商)”最低求助积分说明 758133