Evaluation of an AI Model to Assess Future Breast Cancer Risk

医学 乳腺摄影术 乳腺癌 接收机工作特性 置信区间 乳腺癌筛查 导管癌 癌症 回顾性队列研究 观察研究 乳房成像 癌症登记处 妇科 肿瘤科 内科学
作者
Céleste Damiani,Grigorios Kalliatakis,Muthyala Sreenivas,M Al-Attar,Janice Rose,C.J. Pudney,E Lane,Jack Cuzick,Giovanni Montana,Adam R. Brentnall
出处
期刊:Radiology [Radiological Society of North America]
卷期号:307 (5) 被引量:3
标识
DOI:10.1148/radiol.222679
摘要

Background Accurate breast cancer risk assessment after a negative screening result could enable better strategies for early detection. Purpose To evaluate a deep learning algorithm for risk assessment based on digital mammograms. Materials and Methods A retrospective observational matched case-control study was designed using the OPTIMAM Mammography Image Database from the National Health Service Breast Screening Programme in the United Kingdom from February 2010 to September 2019. Patients with breast cancer (cases) were diagnosed following a mammographic screening or between two triannual screening rounds. Controls were matched based on mammography device, screening site, and age. The artificial intelligence (AI) model only used mammograms at screening before diagnosis. The primary objective was to assess model performance, with a secondary objective to assess heterogeneity and calibration slope. The area under the receiver operating characteristic curve (AUC) was estimated for 3-year risk. Heterogeneity according to cancer subtype was assessed using a likelihood ratio interaction test. Statistical significance was set at P < .05. Results Analysis included patients with screen-detected (median age, 60 years [IQR, 55-65 years]; 2044 female, including 1528 with invasive cancer and 503 with ductal carcinoma in situ [DCIS]) or interval (median age, 59 years [IQR, 53-65 years]; 696 female, including 636 with invasive cancer and 54 with DCIS) breast cancer and 1:1 matched controls, each with a complete set of mammograms at the screening preceding diagnosis. The AI model had an overall AUC of 0.68 (95% CI: 0.66, 0.70), with no evidence of a significant difference between interval and screen-detected (AUC, 0.69 vs 0.67; P = .085) cancer. The calibration slope was 1.13 (95% CI: 1.01, 1.26). There was similar performance for the detection of invasive cancer versus DCIS (AUC, 0.68 vs 0.66; P = .057). The model had higher performance for advanced cancer risk (AUC, 0.72 ≥stage II vs 0.66
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
立夏完成签到,获得积分10
刚刚
2秒前
小二郎应助whisper采纳,获得10
2秒前
第一步完成签到 ,获得积分10
2秒前
1234发布了新的文献求助10
3秒前
zx完成签到,获得积分10
5秒前
5秒前
daliu完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
虬咖琵完成签到,获得积分10
6秒前
愉悦完成签到,获得积分10
7秒前
1234完成签到,获得积分10
10秒前
11秒前
12秒前
赘婿应助必行采纳,获得10
13秒前
hui发布了新的文献求助10
13秒前
YW发布了新的文献求助10
13秒前
清脆代桃完成签到 ,获得积分10
14秒前
hzs完成签到,获得积分10
15秒前
15秒前
16秒前
搜集达人应助innocence采纳,获得50
17秒前
海王星发布了新的文献求助10
17秒前
林悦涵完成签到,获得积分10
17秒前
18秒前
秤子发布了新的文献求助10
18秒前
阿蒙完成签到,获得积分10
19秒前
舒服的友安完成签到,获得积分10
19秒前
YW完成签到,获得积分10
20秒前
瞿寒发布了新的文献求助10
21秒前
林生完成签到 ,获得积分10
21秒前
卡卡西应助非主流的毛线采纳,获得30
22秒前
zq完成签到,获得积分10
23秒前
博qb完成签到,获得积分10
23秒前
23秒前
海王星完成签到,获得积分10
24秒前
24秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805375
求助须知:如何正确求助?哪些是违规求助? 3350342
关于积分的说明 10348655
捐赠科研通 3066276
什么是DOI,文献DOI怎么找? 1683655
邀请新用户注册赠送积分活动 809105
科研通“疑难数据库(出版商)”最低求助积分说明 765243