亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Robust Vascular Segmentation for Raw Complex Images of Laser Speckle Contrast Based on Weakly Supervised Learning

计算机科学 人工智能 分割 图像分割 斑点图案 计算机视觉 模式识别(心理学) 深度学习
作者
Suzhong Fu,Jing Xu,Shilong Chang,Luyao Yang,Shuting Ling,Jinghan Cai,Jiayin Chen,Jiacheng Yuan,Ying Cai,Bei Zhang,Zicheng Huang,Kun Yang,Wenhai Sui,Linyan Xue,Qingliang Zhao
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (1): 39-50 被引量:14
标识
DOI:10.1109/tmi.2023.3287200
摘要

Laser speckle contrast imaging (LSCI) is widely used for in vivo real-time detection and analysis of local blood flow microcirculation due to its non-invasive ability and excellent spatial and temporal resolution. However, vascular segmentation of LSCI images still faces a lot of difficulties due to numerous specific noises caused by the complexity of blood microcirculation's structure and irregular vascular aberrations in diseased regions. In addition, the difficulties of LSCI image data annotation have hindered the application of deep learning methods based on supervised learning in the field of LSCI image vascular segmentation. To tackle these difficulties, we propose a robust weakly supervised learning method, which selects the threshold combinations and processing flows instead of labor-intensive annotation work to construct the ground truth of the dataset, and design a deep neural network, FURNet, based on UNet++ and ResNeXt. The model obtained from training achieves high-quality vascular segmentation and captures multi-scene vascular features on both constructed and unknown datasets with good generalization. Furthermore, we intravital verified the availability of this method on a tumor before and after embolization treatment. This work provides a new approach for realizing LSCI vascular segmentation and also makes a new application-level advance in the field of artificial intelligence-assisted disease diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
adam发布了新的文献求助10
6秒前
风华正茂完成签到 ,获得积分10
10秒前
alan完成签到 ,获得积分0
14秒前
ele_yuki完成签到,获得积分10
14秒前
bkagyin应助JHY采纳,获得10
22秒前
lmk完成签到 ,获得积分10
22秒前
yanzilin完成签到 ,获得积分10
24秒前
vagary完成签到,获得积分10
29秒前
Dasha完成签到,获得积分10
31秒前
zmx完成签到 ,获得积分10
35秒前
38秒前
39秒前
41秒前
45秒前
文继遥发布了新的文献求助10
46秒前
adam完成签到 ,获得积分10
46秒前
饼子发布了新的文献求助10
47秒前
许安发布了新的文献求助10
51秒前
顺利山柏完成签到 ,获得积分10
51秒前
sky完成签到,获得积分10
51秒前
1分钟前
1分钟前
sky发布了新的文献求助10
1分钟前
星辰大海应助着急的绿兰采纳,获得10
1分钟前
小马甲应助一一采纳,获得10
1分钟前
科研通AI5应助淡然的妙芙采纳,获得10
1分钟前
完美谷秋完成签到 ,获得积分10
1分钟前
1分钟前
XueXiTong完成签到,获得积分10
1分钟前
1分钟前
1分钟前
yyy发布了新的文献求助10
1分钟前
斯文败类应助淡然的妙芙采纳,获得10
1分钟前
kk_1315完成签到,获得积分0
1分钟前
许安完成签到,获得积分10
1分钟前
NexusExplorer应助着急的绿兰采纳,获得10
1分钟前
科研通AI5应助魔幻的雪碧采纳,获得10
1分钟前
香蕉觅云应助科研通管家采纳,获得30
1分钟前
GingerF应助科研通管家采纳,获得50
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5186254
求助须知:如何正确求助?哪些是违规求助? 4371512
关于积分的说明 13612260
捐赠科研通 4223952
什么是DOI,文献DOI怎么找? 2316748
邀请新用户注册赠送积分活动 1315371
关于科研通互助平台的介绍 1264471