An efficient discrete rat swarm optimizer for global optimization and feature selection in chemoinformatics

计算机科学 支持向量机 特征选择 元启发式 趋同(经济学) 人工智能 遗传算法 特征(语言学) 选择(遗传算法) 算法 机器学习 数学优化 模式识别(心理学) 数据挖掘 数学 哲学 经济增长 经济 语言学
作者
Essam H. Houssein,Mosa E. Hosney,Diego Oliva,Eman M.G. Younis,Abdelmgeid A. Ali,Waleed M. Mohamed
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:275: 110697-110697
标识
DOI:10.1016/j.knosys.2023.110697
摘要

Machine learning algorithms need feature selection (FS) as a significant step toward filtering unnecessary data. This paper proposes a wrapper FS approach that combines the rat swarm optimization (RSO) algorithm with genetic operators to avoid local optimal. In the proposed approach the transfer functions (TFs) are added to balance local and global search by converting a continuous search space into a discrete space. Eight variants of the bmRSO algorithm were applied for classification purposes using a support vector machine (SVM) to increase accuracy and decrease the number of features over several chemical datasets. The eight bmRSO proposed methods and the original RSO were evaluated using the CEC’20 test suite and twelve datasets (eight chemical and four toxicity effect datasets) to verify their performance in complex optimization problems and FS over real datasets, respectively. Moreover, the binary versions of other stable metaheuristic algorithms such as Harris Hawks Optimization (HHO), Grey Wolf Optimization (GWO), Farmland Fertility Algorithm (FFA), Artificial Gorilla Troops Optimizer (GTO), African Vultures Optimization Algorithm (AVOA), Runge Kutta Optimizer’s (RUN), and Slime Mould Algorithm (SMA) were used to compare the results obtained by the best variant of the bmRSO. Eventually, the experimental results have revealed that in most of the tests, the proposed bmRSO1 has achieved efficient search results with higher convergence speeds without increasing additional computational efforts. From the twelve datasets, the MAO dataset reached the highest results compared with other datasets, so the proposed method, bmRSO1-SVM, achieved an accuracy of 98.201% and a 20.001 number of selected features.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
1秒前
2秒前
123Y发布了新的文献求助10
2秒前
Ge0085关注了科研通微信公众号
3秒前
了是完成签到,获得积分20
3秒前
siiiiyiiiiii发布了新的文献求助10
5秒前
QIHBY发布了新的文献求助10
6秒前
8秒前
8秒前
9秒前
炸洋芋完成签到,获得积分10
9秒前
qing完成签到 ,获得积分20
11秒前
eleven完成签到,获得积分10
11秒前
小飞发布了新的文献求助10
11秒前
12秒前
今夜有雨发布了新的文献求助10
12秒前
飞鸟发布了新的文献求助10
13秒前
椰奶西瓜完成签到,获得积分10
13秒前
柊苒完成签到 ,获得积分10
14秒前
万能图书馆应助dou采纳,获得10
14秒前
orixero应助我怕好时光采纳,获得10
14秒前
16秒前
16秒前
李爱国应助六六采纳,获得10
17秒前
bin8发布了新的文献求助10
17秒前
wangyanling完成签到 ,获得积分10
17秒前
18秒前
18秒前
不怕热的雪糕完成签到,获得积分10
20秒前
英俊的铭应助悦耳念双采纳,获得10
20秒前
22秒前
白菜发布了新的文献求助10
22秒前
瑶瑶车完成签到,获得积分10
22秒前
QIHBY完成签到,获得积分10
22秒前
23秒前
23秒前
玩命的兔子完成签到,获得积分10
23秒前
24秒前
张晓洁完成签到,获得积分10
24秒前
王文艺发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5497253
求助须知:如何正确求助?哪些是违规求助? 4594777
关于积分的说明 14446610
捐赠科研通 4527478
什么是DOI,文献DOI怎么找? 2480888
邀请新用户注册赠送积分活动 1465295
关于科研通互助平台的介绍 1437903