Latent Hazard Notification for Highly Automated Driving: Expected Safety Benefits and Driver Behavioral Adaptation

危害 驾驶模拟器 通知 适应(眼睛) 计算机安全 计算机科学 通知系统 毒物控制 高级驾驶员辅助系统 安全行为 工程类 模拟 人为因素与人体工程学 心理学 人工智能 医学 医疗急救 计算机网络 神经科学 有机化学 化学 法学 政治学
作者
Qingkun Li,Yizi Su,Wenjun Wang,Zhenyuan Wang,Jwu‐Sheng Hu,Guofa Li,Chao Zeng,Bo Cheng
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (10): 11278-11292 被引量:7
标识
DOI:10.1109/tits.2023.3280955
摘要

Although latent hazard notification for highly automated driving is expected to enhance traffic safety, its practical effects have yet to be verified. This study systemically investigated the expected safety benefits and driver behavioral adaptation based on structural equation modeling. First, we developed a notification system to inform drivers of latent hazards with auditory alerts and conducted a driving simulation experiment involving eyes-off-road situations. To test the system, we adopted two types of events (i.e., the collision avoidance function working or failure) in which latent hazards transform into immediate risks. Then, a measurement model was developed to evaluate driver trust, driver attention, and traffic safety. Subsequently, we examined the corresponding causal relationships. On the one hand, latent hazard notification significantly improves driver attention (i.e., more fixations on latent hazards, less engagement in non-driving-related tasks, and faster notice of immediate risks), which significantly enhances traffic safety. On the other hand, latent hazard notification significantly increases driver trust, which lowers driver attention and consequently impairs traffic safety. This causality reveals driver behavioral adaptation, although driver trust does not directly affect traffic safety. Overall, we find that latent hazard notification for highly automated driving can improve traffic safety, but the consequent driver behavioral adaptation impairs 15.12% of the expected safety benefits.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
东东发布了新的文献求助10
刚刚
刚刚
郁金香完成签到,获得积分10
2秒前
丘比特应助202483067采纳,获得10
2秒前
Echoheart发布了新的文献求助10
2秒前
3秒前
mc完成签到 ,获得积分10
3秒前
脑洞疼应助雨曦采纳,获得10
4秒前
福祸相依完成签到,获得积分10
4秒前
ty心明亮完成签到 ,获得积分10
5秒前
随遇而安完成签到 ,获得积分10
6秒前
领导范儿应助gsgg采纳,获得10
7秒前
7秒前
噜噜噜噜噜完成签到,获得积分10
9秒前
小方完成签到,获得积分10
9秒前
hy完成签到 ,获得积分10
9秒前
10秒前
东东发布了新的文献求助10
10秒前
诺奖就在前方完成签到,获得积分10
10秒前
11秒前
oguricap完成签到,获得积分10
12秒前
荔枝吖发布了新的文献求助10
12秒前
earnest完成签到,获得积分10
13秒前
14秒前
雨曦完成签到,获得积分10
14秒前
CNS_Fighter88发布了新的文献求助10
15秒前
15秒前
毅力鸟完成签到,获得积分10
15秒前
雨曦发布了新的文献求助10
17秒前
风中夜天发布了新的文献求助10
17秒前
年轻迪奥完成签到,获得积分10
18秒前
简易完成签到,获得积分10
18秒前
朴素的飞丹完成签到 ,获得积分10
18秒前
东东发布了新的文献求助10
19秒前
little佳完成签到,获得积分10
20秒前
芹菜完成签到,获得积分10
21秒前
小花发布了新的文献求助10
22秒前
苏苏苏完成签到 ,获得积分10
22秒前
王琳完成签到,获得积分10
23秒前
23秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801141
求助须知:如何正确求助?哪些是违规求助? 3346790
关于积分的说明 10330402
捐赠科研通 3063155
什么是DOI,文献DOI怎么找? 1681388
邀请新用户注册赠送积分活动 807549
科研通“疑难数据库(出版商)”最低求助积分说明 763728