Deep-Learning-Based Video Frame Interpolation Method for Ultrasound Localization Microscopy: A Preliminary Study

人工智能 插值(计算机图形学) 计算机科学 计算机视觉 帧速率 可视化 超声波 微气泡 帧(网络) 特征(语言学) 图像分辨率 双三次插值 深度学习 模式识别(心理学) 声学 线性插值 图像(数学) 物理 电信 语言学 哲学
作者
Yaqiong Xiao,Wenzhao Han,Bo Peng
标识
DOI:10.1109/prai59366.2023.10331996
摘要

Ultrasound Localization Microscopy (ULM) achieves super-resolution vascular imaging by accurately localizing the positions of individual ultrasound contrast agents (microbubbles) across multiple consecutive frames. However, traditional ULM methods require ultrafast plane wave imaging to acquire microbubble trajectories. This requirement poses high demands on the equipment and is difficult to achieve with traditional focused wave-based ultrasound devices, thus hindering the clinical application of ULM to some extent. To address this issue, we propose a modified deep learning-based method for Ultrasound Video Frame Interpolation (VFI) with 3× interpolation. We extracted the feature maps from the original input of two frames and subsequently generated the feature maps for the intermediate two frames. This method aims to increase the frame rate in a software-based manner and is specifically designed f or U LM. To evaluate the effectiveness of our proposed method, we conducted experiments using a dataset of rat brain images. The obtained super-resolution frames achieved an average Peak Signal-to-Noise Ratio (PSNR) of 55.16dB and an average Structural Similarity Index (SSIM) of 0.9957. Notably, the resulting images allowed visualization of vessels with a minimum diameter of 26.25 micrometers. These findings highlight the potential of our proposed method in advancing ultrasound-based imaging techniques. By overcoming the limitations imposed by the need for ultrafast plane wave imaging, our method has the potential to pave the way for broader clinical application of ULM, enabling its utilization in a wider range of diseases and conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沉静茗完成签到,获得积分10
刚刚
咸鱼完成签到,获得积分10
1秒前
Lucas应助绝望核弹采纳,获得10
1秒前
2秒前
hanzhipad举报22222求助涉嫌违规
2秒前
3秒前
4秒前
杨家乐关注了科研通微信公众号
5秒前
受伤翠容发布了新的文献求助30
6秒前
木炭完成签到,获得积分10
7秒前
Alessnndre发布了新的文献求助10
7秒前
7秒前
9秒前
灵巧的蝴蝶完成签到 ,获得积分10
9秒前
受伤翠容完成签到,获得积分10
10秒前
10秒前
11秒前
12秒前
12秒前
13秒前
大个应助1.1采纳,获得10
13秒前
TaoJ发布了新的文献求助10
14秒前
14秒前
believe发布了新的文献求助20
14秒前
15秒前
16秒前
17秒前
17秒前
17秒前
17秒前
旺仔牛奶完成签到,获得积分10
18秒前
SciGPT应助lelele采纳,获得10
18秒前
19秒前
绝望核弹发布了新的文献求助10
20秒前
20秒前
zcious发布了新的文献求助10
20秒前
旺仔牛奶发布了新的文献求助30
20秒前
21秒前
zhonghbush发布了新的文献求助10
21秒前
科研通AI5应助布岩壁采纳,获得20
22秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843574
求助须知:如何正确求助?哪些是违规求助? 3385883
关于积分的说明 10542869
捐赠科研通 3106677
什么是DOI,文献DOI怎么找? 1711032
邀请新用户注册赠送积分活动 823920
科研通“疑难数据库(出版商)”最低求助积分说明 774380