A Multiscale Attention Mechanism Super-Resolution Confocal Microscopy for Wafer Defect Detection

薄脆饼 共焦显微镜 材料科学 显微镜 机制(生物学) 共焦 纳米技术 超分辨显微术 共焦激光扫描显微镜 分辨率(逻辑) 薄层荧光显微镜 光电子学 光学 计算机视觉 扫描共焦电子显微镜 计算机科学 人工智能 工程类 生物医学工程 物理 量子力学
作者
Xue-Feng Sun,Baoyuan Zhang,Yushan Wang,J.J. Mai,Yuhang Wang,Jiubin Tan,Weibo Wang
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:1
标识
DOI:10.1109/tase.2024.3358693
摘要

Confocal microscopy is an essential component of wafer defect detection systems. Wafers are raw materials used in the manufacture of semiconductor chips. The semiconductor chip manufacturing process undergoes frequent updates, which cause an increase in the number and types of defects. This leads to lengthy scanning times for large wafers, and warrants the need to enhance the throughput of optical microscopy inspections. To address this issue, we propose the use of the multi-scale residual dilated convolution attention mechanism network (MRDCAN) super-resolution reconstruction algorithm to reproduce high-resolution images from low-magnification objective lens acquired images. The algorithm introduces the attention mechanism to enhance the information richness of wafer images, introduces the multi-scale expansion convolution to expand the convolutional sensor field to eliminate artefacts to enrich the detailed information of wafer image contours, and meets the image quality requirements through the loss calculation method based on the combination of mean-square error (MSE) and structural similarity (SSIM) image evaluation indices. It is shown that the reconstruction of low-resolution wafer images using this algorithm breaks the optical diffraction limit and achieves the purpose of improving the wafer image resolution. Compared with state-of-the-art models, the proposed algorithm can achieve the best performance with an SSIM index of 94.26 percent for the reconstructed super-resolution wafer images. Our algorithm provides fresh insights into the current challenges of confocal microscopy in the field of wafer defect detection Note to Practitioners —Shrinking semiconductor wafer sizes and increasingly complex inspection steps lead to reduced throughput of optical microscope inspection systems. Current convolutional neural network (CNN) networks cannot solve the problem of super-resolution of complex wafer images well. This seriously affects their application in practical detection. Compared with other algorithms, the super-resolution reconstruction algorithm proposed in this paper has a short training time and a multi-scale structure that effectively prevents the loss function curve from oscillating. And the reconstructed wafer image achieves obvious advantages in terms of visual effect and evaluation indices, with strong robustness to Gaussian noise. In addition, the final discussion shows that high-resolution images can be reproduced through the combination of low-magnification objective lens and deep learning super-resolution algorithm, which can simplify the steps of wafer defect detection and increase the efficiency of the whole wafer defect detection by more than 100%. This study demonstrates the potential of super-resolution confocal microscopy for wafer defect detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
园艺小学生完成签到,获得积分10
1秒前
1秒前
YMH完成签到 ,获得积分10
1秒前
2秒前
内向苡完成签到,获得积分10
3秒前
felix完成签到,获得积分10
3秒前
瞳梦完成签到,获得积分0
3秒前
如果完成签到,获得积分10
5秒前
Mr_I完成签到,获得积分10
5秒前
我是老大应助自觉以冬采纳,获得10
6秒前
星辰完成签到,获得积分10
6秒前
phwibalki发布了新的文献求助10
6秒前
7秒前
英勇星月完成签到 ,获得积分10
7秒前
妮妮发布了新的文献求助10
7秒前
不安海蓝完成签到,获得积分10
7秒前
飞云发布了新的文献求助10
7秒前
CipherSage应助高大的凝芙采纳,获得10
8秒前
林荫下的熊完成签到,获得积分10
9秒前
9秒前
小陈完成签到,获得积分10
10秒前
10秒前
Edgar完成签到,获得积分10
13秒前
LYL完成签到,获得积分10
13秒前
Jasper应助xtt采纳,获得10
13秒前
与可完成签到,获得积分10
13秒前
Tim完成签到 ,获得积分10
14秒前
闲鱼嫌鱼咸完成签到,获得积分10
14秒前
丰都残卷发布了新的文献求助10
14秒前
尹山蝶完成签到,获得积分10
14秒前
15秒前
15秒前
樊书雪完成签到,获得积分10
15秒前
感动的听荷完成签到,获得积分10
15秒前
joker完成签到,获得积分20
16秒前
发仔完成签到,获得积分10
17秒前
RJL完成签到,获得积分20
18秒前
司空康完成签到,获得积分10
18秒前
哈哈哈完成签到,获得积分10
19秒前
小轩完成签到,获得积分10
19秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795646
求助须知:如何正确求助?哪些是违规求助? 3340742
关于积分的说明 10301472
捐赠科研通 3057251
什么是DOI,文献DOI怎么找? 1677590
邀请新用户注册赠送积分活动 805503
科研通“疑难数据库(出版商)”最低求助积分说明 762642