Size-controlled wet-chemical synthesis of sulfide superionic conductors for high-performance all-solid-state batteries

材料科学 快离子导体 硫化物 离子电导率 锂(药物) 化学工程 电导率 成核 粒径 纳米技术 冶金 物理化学 电极 电解质 有机化学 化学 工程类 医学 内分泌学
作者
Junghwan Sung,Hae Gon Lee,Yung-Soo Jo,Donghee Kim,Heetaek Park,Jun‐Ho Park,Doohun Kim,Yoon‐Cheol Ha,Kang‐Jun Baeg,Jun‐Woo Park
出处
期刊:Energy Storage Materials [Elsevier BV]
卷期号:67: 103253-103253 被引量:9
标识
DOI:10.1016/j.ensm.2024.103253
摘要

The escalating concerns surrounding the safety issues tied to the flammability of organic liquid electrolytes in conventional lithium-ion batteries have catalyzed the evolution and advancement of all-solid-state batteries (ASSBs) integrated with solid electrolytes (SEs). Among various SE materials, sulfide-based lithium argyrodite has risen to prominence owing to its high ionic conductivity and ease of processability. Despite the wet-chemical processing method being considered advantageous for the synthesis of sulfide SEs, due to its inherent simplicity, potential scalability, and cost-effectiveness, certain challenges persist. These primarily pertain to achieving high ionic conductivity and mitigating interfacial resistance between the electrode and the SEs. Addressing these challenges, this study presents a novel, scalable, and cost-efficient wet synthesis approach to produce superionic conductive sulfide-based SEs. This method involves careful regulation of the nucleation rate and strategic substitution of elements to control particle size and enhance ionic conductivity. The resultant Li5.5PS4.5Cl1.5 SEs synthesized show a uniform size distribution (average particle diameter = 7 μm), coupled with a high ionic conductivity of 4.98 mS cm−1. This level of ionic conductivity is either comparable to or exceeds those produced through dry processes. The ability to control particle size optimizes the contact interface between the electrode and the electrolyte, reducing interfacial resistance and increasing discharge capacity. Consequently, this method paves the way for mass production of high-quality sulfide SEs. The findings of this study serve to further the development of high-performing ASSBs, making them suitable for implementation in high output power and long cruising distance electric vehicles, pushing the envelope for battery-powered transportation solutions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
abib发布了新的文献求助10
3秒前
华仔应助流星雨采纳,获得10
3秒前
尊敬寒松发布了新的文献求助20
3秒前
ESC惠子子子子子完成签到 ,获得积分10
4秒前
晓布衣完成签到 ,获得积分10
5秒前
6秒前
pcr163应助淡定的傲玉采纳,获得30
8秒前
khan完成签到,获得积分10
8秒前
coolkid应助鹿呦呦采纳,获得10
10秒前
12秒前
xiaotutu发布了新的文献求助10
13秒前
14秒前
14秒前
15秒前
量子星尘发布了新的文献求助10
16秒前
流星雨发布了新的文献求助10
17秒前
闪电小超人完成签到,获得积分10
19秒前
幽默亦旋完成签到 ,获得积分10
19秒前
sunny完成签到,获得积分10
22秒前
25秒前
柳润发布了新的文献求助30
25秒前
26秒前
27秒前
30秒前
科研通AI2S应助淡定的傲玉采纳,获得10
31秒前
hzx发布了新的文献求助10
31秒前
31秒前
哈哈哈发布了新的文献求助10
32秒前
abib完成签到,获得积分10
32秒前
尊敬寒松发布了新的文献求助20
32秒前
执着烤鸡发布了新的文献求助10
33秒前
我不知道该叫啥完成签到,获得积分10
33秒前
35秒前
35秒前
尼禄发布了新的文献求助10
35秒前
星辰大海发布了新的文献求助30
35秒前
冰魂应助zg采纳,获得10
36秒前
了尘完成签到,获得积分10
37秒前
惊蛰时分听春雷完成签到,获得积分10
38秒前
烟花应助hzx采纳,获得30
38秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Building Quantum Computers 1078
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3862618
求助须知:如何正确求助?哪些是违规求助? 3405161
关于积分的说明 10643514
捐赠科研通 3128637
什么是DOI,文献DOI怎么找? 1725356
邀请新用户注册赠送积分活动 830951
科研通“疑难数据库(出版商)”最低求助积分说明 779502