Facilitating the high voltage stability of NFM via transition metal slabs high-entropy configuration strategy

材料科学 过渡金属 纳米技术 生物化学 化学 催化作用
作者
Xiangyu Liu,Yangyang Wan,Min Jia,Hou Zhang,Wenyong Xie,Haonan Hu,Xiaohong Yan,Xiaoyu Zhang
出处
期刊:Energy Storage Materials [Elsevier BV]
卷期号:67: 103313-103313 被引量:17
标识
DOI:10.1016/j.ensm.2024.103313
摘要

Sodium ion batteries, which is viewed as the potential candidate of Li-ion batteries, are now at the edge of wildly application. The layered oxide cathode materials, represented by NaNi1/3Fe1/3Mn1/3O2 (NFM), inherits the experience of success from LIBs are now promising of commercialization. Yet, the relative low operation voltage of NFM causing by the existence of Fe migration above 4.2 V hinder its further application nowadays. Herein, high-entropy O3-type NaMg0.08Cu0.12Ni0.2Fe0.2Mn0.2Ti0.2O2(HNFM) was proposed addressing working voltage at 4.3 V with the inhibition of large amount of Fe migration. Electrochemical test showed a specific capacity of 131 mAh g−1 was achieved within the voltage range from 2.0 to 4.3 V at current density of 0.2 C which boosted an energy density of up to 425 Wh kg−1. After 200 cycles at a 1 C current density, the capacity retention remains at 84 %. In-situ XRD analysis revealed that HNFM alleviated phase transition at high voltage compared to NFM thus it can withstand a wide operating voltage range of 2–4.3 V. DFT calculations demonstrated that transition metal slabs with high-entropy configurations could effectively suppress the migration of Fe ions from the transition metal slabs to the Na layer, thereby further enhancing the material's stability during cycling. These research findings shed light on the high-voltage operating for the layered oxide materials which provide the novel insight of the material design and inspire the commercialization of sodium ion batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
搜集达人应助zcz采纳,获得10
3秒前
科目三应助melody采纳,获得10
5秒前
科研通AI5应助洁净的千凡采纳,获得10
5秒前
5秒前
kiwi完成签到,获得积分20
7秒前
nico完成签到 ,获得积分10
8秒前
9秒前
乌龟gogogo完成签到 ,获得积分10
10秒前
11秒前
闷声发完成签到,获得积分10
11秒前
疯尤金完成签到,获得积分10
13秒前
zcz发布了新的文献求助10
13秒前
18秒前
路过的热心群众完成签到,获得积分10
22秒前
23秒前
夜十五完成签到,获得积分10
23秒前
25秒前
科研强发布了新的文献求助10
27秒前
Owen应助scl采纳,获得10
28秒前
dennisysz发布了新的文献求助10
30秒前
30秒前
发哥完成签到 ,获得积分10
33秒前
ding应助玄音采纳,获得10
34秒前
11完成签到,获得积分10
35秒前
zho应助un采纳,获得10
36秒前
foster发布了新的文献求助10
37秒前
37秒前
笨笨芯应助意兴不阑珊采纳,获得10
37秒前
小马甲应助域名采纳,获得10
41秒前
42秒前
42秒前
44秒前
foster完成签到,获得积分10
45秒前
qianmo发布了新的文献求助10
46秒前
玄音发布了新的文献求助10
46秒前
48秒前
爱笑千万发布了新的文献求助20
50秒前
51秒前
JY发布了新的文献求助10
54秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777469
求助须知:如何正确求助?哪些是违规求助? 3322795
关于积分的说明 10211853
捐赠科研通 3038215
什么是DOI,文献DOI怎么找? 1667163
邀请新用户注册赠送积分活动 797990
科研通“疑难数据库(出版商)”最低求助积分说明 758133