Predicting autism spectrum disorder using maternal risk factors: A multi-center machine learning study

自闭症谱系障碍 队列 逻辑回归 队列研究 心理学 医学 自闭症 机器学习 儿科 精神科 计算机科学 内科学
作者
Qiuhong Wei,Yuanjie Xiao,Ting Yang,Jie Chen,Li Chen,Ke Wang,Jie Zhang,Ling Li,Feiyong Jia,Lijie Wu,Yan Hao,Xiaoyan Ke,Mingji Yi,Hong Qi,Jinjin Chen,Shuanfeng Fang,Yichao Wang,Qi Wang,Chunhua Jin,Ximing Xu
出处
期刊:Psychiatry Research-neuroimaging [Elsevier BV]
卷期号:334: 115789-115789 被引量:4
标识
DOI:10.1016/j.psychres.2024.115789
摘要

Autism spectrum disorder (ASD) is a neurodevelopmental disorder with a complex environmental etiology involving maternal risk factors, which have been combined with machine learning to predict ASD. However, limited studies have considered the factors throughout preconception, perinatal, and postnatal periods, and even fewer have been conducted in multi-center. In this study, five predictive models were developed using 57 maternal risk factors from a cohort across ten cities (ASD:1232, typically developing[TD]: 1090). The extreme gradient boosting model performed best, achieving an accuracy of 66.2 % on the external cohort from three cities (ASD:266, TD:353). The most important risk factors were identified as unstable emotions and lack of multivitamin supplementation using Shapley values. ASD risk scores were calculated based on predicted probabilities from the optimal model and divided into low, medium, and high-risk groups. The logistic analysis indicated that the high-risk group had a significantly increased risk of ASD compared to the low-risk group. Our study demonstrated the potential of machine learning models in predicting the risk for ASD based on maternal factors. The developed model provided insights into the maternal emotion and nutrition factors associated with ASD and highlighted the potential clinical applicability of the developed model in identifying high-risk populations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助求助小天才采纳,获得10
1秒前
2秒前
2秒前
Arvin完成签到,获得积分10
2秒前
3秒前
大华完成签到,获得积分10
3秒前
happy8le发布了新的文献求助10
4秒前
树袋熊和考拉完成签到,获得积分20
4秒前
完美世界应助玝酩采纳,获得10
4秒前
Huajing_Yang发布了新的文献求助10
4秒前
研友_851KE8发布了新的文献求助10
6秒前
6秒前
alixy发布了新的文献求助10
7秒前
xuexue发布了新的文献求助10
7秒前
挺喜欢你完成签到,获得积分10
7秒前
leo7发布了新的文献求助10
8秒前
9秒前
是述不是沭完成签到,获得积分10
9秒前
研友_VZG7GZ应助深情笑南采纳,获得10
10秒前
10秒前
124cndhaP发布了新的文献求助10
11秒前
fe999完成签到,获得积分10
11秒前
自然的茉莉完成签到,获得积分10
12秒前
12秒前
东方完成签到,获得积分10
12秒前
九九发布了新的文献求助10
13秒前
讨厌麻烦发布了新的文献求助10
15秒前
16秒前
高挑的代男完成签到,获得积分10
16秒前
冰冰冷冰冰关注了科研通微信公众号
17秒前
leo7完成签到,获得积分10
19秒前
小蘑菇应助左丘绝山采纳,获得10
20秒前
21秒前
BruceZhang2023完成签到,获得积分10
21秒前
jinzhe完成签到,获得积分10
22秒前
23秒前
23秒前
sxs完成签到 ,获得积分10
23秒前
大个应助Michaelialzm采纳,获得10
25秒前
深情笑南发布了新的文献求助10
25秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd Edition 4000
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Implantable Technologies 500
A simple method for reusing western blots on PVDF membranes 500
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 计算机科学 内科学 纳米技术 复合材料 化学工程 遗传学 催化作用 物理化学 基因 冶金 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3925602
求助须知:如何正确求助?哪些是违规求助? 3470160
关于积分的说明 10962294
捐赠科研通 3199751
什么是DOI,文献DOI怎么找? 1767933
邀请新用户注册赠送积分活动 857113
科研通“疑难数据库(出版商)”最低求助积分说明 795897