Log-Regularized Dictionary-Learning-Based Reinforcement Learning Algorithm for GNSS Positioning Correction

计算机科学 强化学习 全球导航卫星系统应用 算法 人工智能 机器学习 全球定位系统 电信
作者
J. Tang,Xueni Chen,Zhenni Li,Haoli Zhao,Shengli Xie,Kan Xie,Victor Kuzin,Bo Li
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (8): 15022-15037
标识
DOI:10.1109/jiot.2023.3345943
摘要

In dynamic and complex environments, the positioning accuracy of global navigation satellite system (GNSS) will be seriously reduced. Deep reinforcement learning (DRL) has been found to give effective dynamic policy learning for complex GNSS positioning correction tasks. However, catastrophic interference in DRL models caused by the high correlation between successive positioning states, together with instability in gradient backpropagation in deep neural networks (DNNs), produces inaccurate DRL value approximation thereby degrades GNSS positioning performance. In this article, we develop a dictionary learning-based reinforcement learning (RL) algorithm with the nonconvex log regularizer for GNSS positioning correction. To avoid DNN instability problems, a dictionary learning-structured RL model is proposed. It has a feed-forward learning architecture obviating the need for gradient backpropagation. The nonconvex log regularizer for dictionary learning reduces the correlation between states and thereby alleviates interference in RL. This provides sparse representations, which can more effectively capture features and produce representations with lower biases than convex regularizers. Furthermore, the nonconvex optimization is made efficient through a decomposition scheme that generates an explicit closed-form solution using the proximal operator. Finally, based on the proposed dictionary learning-structured RL model, a novel positioning correction method is developed to enhance GNSS positioning accuracy. The experimental results indicate that the proposed method outperforms state-of-the-art sparse coding-based RL methods in benchmark environments. Moreover, the proposed method effectively improves GNSS positioning accuracy relative to the glsms Kalman filter acrlong KF method and the glsms weighted least squares acrlong WLS method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pluto应助花蝴蝶采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
Akim应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得30
2秒前
烟花应助科研通管家采纳,获得10
2秒前
3秒前
LiXingchen完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
怡然诗霜完成签到,获得积分10
3秒前
传奇3应助梅思双采纳,获得10
4秒前
夕寸完成签到,获得积分10
5秒前
牛马人生完成签到,获得积分10
5秒前
5秒前
chanyi完成签到,获得积分10
6秒前
momo关注了科研通微信公众号
6秒前
剩饭的狗发布了新的文献求助10
7秒前
8秒前
祝祝完成签到,获得积分10
9秒前
9秒前
大模型应助yyy采纳,获得10
10秒前
JamesPei应助hhh采纳,获得10
10秒前
ABC发布了新的文献求助10
11秒前
大魔王发布了新的文献求助10
12秒前
如意发布了新的文献求助10
12秒前
老虎皮完成签到,获得积分10
14秒前
祝祝发布了新的文献求助10
14秒前
14秒前
幻梦发布了新的文献求助10
15秒前
16秒前
17秒前
17秒前
打打应助可爱藏今采纳,获得10
18秒前
18秒前
19秒前
怕黑嘉懿发布了新的文献求助10
20秒前
yyy发布了新的文献求助10
21秒前
彭于晏应助奇迹大多采纳,获得30
22秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787714
求助须知:如何正确求助?哪些是违规求助? 3333335
关于积分的说明 10261246
捐赠科研通 3049024
什么是DOI,文献DOI怎么找? 1673399
邀请新用户注册赠送积分活动 801874
科研通“疑难数据库(出版商)”最低求助积分说明 760385