Fault Diagnosis of CTCS-3 On-Board Logic Function Based on SSGAN Framework

计算机科学 功能(生物学) 细胞生物学 生物
作者
Daqian Zhang,Jidong Lv,Zhengwei Luo,Hongjie Liu,Ming Chai,Wenxiang Ge,Yan Fei
标识
DOI:10.1109/itsc57777.2023.10422322
摘要

As a typical safety-critical system, the CTCS-3 on-board system has complex logic functions, in which any faults happened may lead to huge loss of life and properties. Fault diagnosis is an important means to improve the safety and reliability of the train control system, thus can gain insight into its logical operating mechanism. Because of the overfitting of fault data with low sampling frequency, the small amount of CTCS-3 on-board dataset makes it a great bottleneck for traditional fault diagnosis method application. Based on the high time-series characteristic in logic function fault data, this paper proposes a novel Semi-Supervised Generative Adversarial Networks(SSGAN) fault diagnosis framework that introduces One-dimensional convolutional neural network(1D CNN) and Long and Short Term Memory Network(LSTM) to overcome the problem. In this framework, the semi-supervised training method and the constant fitting and generation of the data by the generator, the problem of over-fitting can be solved effectively. The 1D CNN introduced in the discriminator follows time to convolve the data, and LSTM achieves long-term memory of relevant information by selectively remembering and forgetting prior information, thus extracting temporal features. We apply this framework to real train operation fault data to diagnose on-board logic function faults. The experiment indicates that despite a 50% labeled rate, the test set achieves an accuracy of 97.2%, effectively alleviating the over-fitting problem caused by small data volumes. Compared with other commonly used supervised fault diagnosis methods such as SVM, CNN-LSTM, etc., our model achieves a better F1-score.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jayden发布了新的文献求助10
1秒前
舒服的觅夏完成签到,获得积分10
1秒前
小蘑菇应助小王子采纳,获得10
1秒前
小辉辉发布了新的文献求助30
1秒前
脑洞疼应助北城采纳,获得10
2秒前
chouchou发布了新的文献求助10
2秒前
Afffrain完成签到 ,获得积分10
3秒前
WhiteT完成签到,获得积分10
4秒前
七楼完成签到,获得积分10
4秒前
大吱吱发布了新的文献求助10
4秒前
5秒前
Liujiawen0008完成签到,获得积分10
5秒前
6秒前
zhou完成签到,获得积分10
7秒前
小妮完成签到,获得积分20
7秒前
北城完成签到,获得积分10
7秒前
103921wjk完成签到,获得积分10
8秒前
9秒前
9秒前
所所应助Demi采纳,获得10
9秒前
9秒前
SYLH应助lsq采纳,获得10
9秒前
luzhenzhen完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
领导范儿应助BPM采纳,获得10
11秒前
chouchou完成签到,获得积分10
12秒前
Lcrainy发布了新的文献求助10
13秒前
打野发布了新的文献求助10
13秒前
eschew发布了新的文献求助10
14秒前
willyt完成签到,获得积分10
14秒前
Siyu完成签到 ,获得积分10
14秒前
栀盎发布了新的文献求助10
15秒前
16秒前
大旭完成签到 ,获得积分10
16秒前
18秒前
hhh12138发布了新的文献求助200
18秒前
善学以致用应助小妮采纳,获得10
19秒前
白泽阳发布了新的文献求助10
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Lidocaine regional block in the treatment of acute gouty arthritis of the foot 400
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3933850
求助须知:如何正确求助?哪些是违规求助? 3479150
关于积分的说明 11003883
捐赠科研通 3208941
什么是DOI,文献DOI怎么找? 1773427
邀请新用户注册赠送积分活动 860410
科研通“疑难数据库(出版商)”最低求助积分说明 797656