Does Dual-Energy Computed Tomography Material Decomposition Improve Radiomics Capability to Predict Survival in Head and Neck Squamous Cell Carcinoma Patients? A Preliminary Investigation

医学 置信区间 无线电技术 头颈部鳞状细胞癌 头颈部 组内相关 放射科 成像生物标志物 基底细胞 核医学 生存分析 生物标志物 头颈部癌 肿瘤科 内科学 磁共振成像 放射治疗 外科 临床心理学 心理测量学 生物化学 化学
作者
Simon Bernatz,Ines Böth,Jörg Ackermann,Iris Burck,Scherwin Mahmoudi,Lukas Lenga,Simon S. Martin,Jan‐Erik Scholtz,Ina Koch,Leon D. Grünewald,Ina Koch,Timo Stöver,Peter J. Wild,Ria Winkelmann,Thomas J. Vogl,Daniel Pinto dos Santos
出处
期刊:Journal of Computer Assisted Tomography [Lippincott Williams & Wilkins]
卷期号:48 (2): 323-333 被引量:2
标识
DOI:10.1097/rct.0000000000001551
摘要

Objective Our study objective was to explore the additional value of dual-energy CT (DECT) material decomposition for squamous cell carcinoma of the head and neck (SCCHN) survival prognostication. Methods A group of 50 SCCHN patients (male, 37; female, 13; mean age, 63.6 ± 10.82 years) with baseline head and neck DECT between September 2014 and August 2020 were retrospectively included. Primary tumors were segmented, radiomics features were extracted, and DECT material decomposition was performed. We used independent train and validation datasets with cross-validation and 100 independent iterations to identify prognostic signatures applying elastic net (EN) and random survival forest (RSF). Features were ranked and intercorrelated according to their prognostic importance. We benchmarked the models against clinical parameters. Intraclass correlation coefficients were used to analyze the interreader variation. Results The exclusively radiomics-trained models achieved similar ( P = 0.947) prognostic performance of area under the curve (AUC) = 0.784 (95% confidence interval [CI], 0.775–0.812) (EN) and AUC = 0.785 (95% CI, 0.759–0.812) (RSF). The additional application of DECT material decomposition did not improve the model's performance (EN, P = 0.594; RSF, P = 0.198). In the clinical benchmark, the top averaged AUC value of 0.643 (95% CI, 0.611–0.675) was inferior to the quantitative imaging-biomarker models ( P < 0.001). A combined imaging and clinical model did not improve the imaging-based models ( P > 0.101). Shape features revealed high prognostic importance. Conclusions Radiomics AI applications may be used for SCCHN survival prognostication, but the spectral information of DECT material decomposition did not improve the model's performance in our preliminary investigation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
伢子发布了新的文献求助10
1秒前
最好的完成签到,获得积分10
2秒前
积极钧完成签到,获得积分10
3秒前
3秒前
Mr.Jian完成签到,获得积分10
3秒前
null完成签到,获得积分10
4秒前
zhang完成签到,获得积分10
4秒前
靓丽的奇异果完成签到,获得积分10
4秒前
NexusExplorer应助nannan采纳,获得20
4秒前
Zard完成签到,获得积分10
5秒前
Janice完成签到,获得积分10
5秒前
my196755完成签到,获得积分10
5秒前
apckkk完成签到 ,获得积分10
6秒前
李子完成签到,获得积分10
6秒前
7秒前
7秒前
chenamy完成签到,获得积分10
7秒前
优雅面包完成签到,获得积分10
7秒前
ertredffg完成签到,获得积分10
9秒前
en完成签到,获得积分10
10秒前
10秒前
考研小白发布了新的文献求助10
10秒前
骑猪看日落完成签到,获得积分10
11秒前
轻松的小虾米完成签到,获得积分10
11秒前
April完成签到,获得积分10
12秒前
方百招完成签到,获得积分10
12秒前
yiyiyi完成签到,获得积分10
12秒前
优雅面包发布了新的文献求助10
12秒前
学术老6完成签到,获得积分10
13秒前
番茄黄瓜芝士片完成签到 ,获得积分10
14秒前
岳小龙发布了新的文献求助10
15秒前
xhm完成签到 ,获得积分10
16秒前
乐观健柏完成签到,获得积分10
18秒前
李德胜完成签到,获得积分10
19秒前
19秒前
20秒前
时尚的菠萝完成签到,获得积分10
20秒前
ee完成签到,获得积分10
20秒前
yicheng完成签到,获得积分10
20秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Pathology of Laboratory Rodents and Rabbits (5th Edition) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816002
求助须知:如何正确求助?哪些是违规求助? 3359464
关于积分的说明 10402883
捐赠科研通 3077360
什么是DOI,文献DOI怎么找? 1690292
邀请新用户注册赠送积分活动 813716
科研通“疑难数据库(出版商)”最低求助积分说明 767743