亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Human favoritism, not AI aversion: People’s perceptions (and bias) toward generative AI, human experts, and human–GAI collaboration in persuasive content generation

质量(理念) 感知 心理学 内容(测量理论) 计算机科学 社会心理学 人工智能 认识论 数学 哲学 神经科学 数学分析
作者
Yunhao Zhang,Renée Gosline
出处
期刊:Judgment and Decision Making [Cambridge University Press]
卷期号:18 被引量:88
标识
DOI:10.1017/jdm.2023.37
摘要

Abstract With the wide availability of large language models and generative AI, there are four primary paradigms for human–AI collaboration: human-only, AI-only (ChatGPT-4), augmented human (where a human makes the final decision with AI output as a reference), or augmented AI (where the AI makes the final decision with human output as a reference). In partnership with one of the world’s leading consulting firms, we enlisted professional content creators and ChatGPT-4 to create advertising content for products and persuasive content for campaigns following the aforementioned paradigms. First, we find that, contrary to the expectations of some of the existing algorithm aversion literature on conventional predictive AI, the content generated by generative AI and augmented AI is perceived as of higher quality than that produced by human experts and augmented human experts. Second, revealing the source of content production reduces—but does not reverse—the perceived quality gap between human- and AI-generated content. This bias in evaluation is predominantly driven by human favoritism rather than AI aversion: Knowing that the same content is created by a human expert increases its (reported) perceived quality, but knowing that AI is involved in the creation process does not affect its perceived quality. Further analysis suggests this bias is not due to a ‘quality prime’ as knowing the content they are about to evaluate comes from competent creators (e.g., industry professionals and state-of-the-art AI) without knowing exactly that the creator of each piece of content does not increase participants’ perceived quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
inRe发布了新的文献求助10
7秒前
fengliurencai完成签到,获得积分10
36秒前
彭于晏应助郭博采纳,获得10
40秒前
55秒前
轻松一曲发布了新的文献求助10
55秒前
58秒前
美满的羊完成签到 ,获得积分10
1分钟前
1分钟前
MADMAX发布了新的文献求助10
1分钟前
过时的手套完成签到,获得积分10
1分钟前
情怀应助过时的手套采纳,获得10
1分钟前
管管吃饱辣完成签到 ,获得积分20
1分钟前
1分钟前
1分钟前
MADMAX完成签到,获得积分10
1分钟前
郭博发布了新的文献求助10
1分钟前
1分钟前
小圆圈发布了新的文献求助100
2分钟前
2分钟前
2分钟前
Ava应助科研通管家采纳,获得10
2分钟前
null应助科研通管家采纳,获得10
2分钟前
null应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
顾矜应助科研通管家采纳,获得20
2分钟前
jarrykim完成签到,获得积分10
2分钟前
2分钟前
上官若男应助LukeLion采纳,获得10
3分钟前
所所应助轻松一曲采纳,获得10
3分钟前
每㐬山风完成签到 ,获得积分10
3分钟前
3分钟前
LukeLion发布了新的文献求助10
3分钟前
3分钟前
微醺潮汐发布了新的文献求助10
3分钟前
852应助dbyy采纳,获得10
3分钟前
灯光师完成签到,获得积分10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Bone Marrow Immunohistochemistry 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5628131
求助须知:如何正确求助?哪些是违规求助? 4715760
关于积分的说明 14963712
捐赠科研通 4785826
什么是DOI,文献DOI怎么找? 2555337
邀请新用户注册赠送积分活动 1516672
关于科研通互助平台的介绍 1477224