An approach for handwritten Chinese text recognition unifying character segmentation and recognition

分割 性格(数学) 人工智能 模式识别(心理学) 计算机科学 解码方法 注释 水准点(测量) 推论 连接主义 语音识别 自然语言处理 人工神经网络 数学 算法 几何学 大地测量学 地理
作者
Mingming Yu,Heng Zhang,Fei Yin,Cheng‐Lin Liu
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:151: 110373-110373 被引量:8
标识
DOI:10.1016/j.patcog.2024.110373
摘要

Text line recognition methods can be categorized into explicit segmentation based and implicit segmentation based ones. Explicit segmentation based methods require character-level annotation during training, while implicit segmentation based methods, trained on line-level annotated data, face alignment drift challenges. Though some methods have been proposed to address these challenges using weakly supervised object detection, they often rely on cumbersome pseudo-box generation processes and complex decoding. In this paper, we propose a unified framework to overcome these challenges, achieving high accuracy in text recognition and character segmentation. To eliminate the need of character-level annotated real text line data in training, we introduce a novel training paradigm that utilizes character-level annotated synthetic data and line-level annotated real data jointly. For synthetic data, candidate characters are explicitly aligned with labeled characters to generate hard labels for supervising model training. For real data, implicit alignment is produced by Connectionist Temporal Classification (CTC) mapping to provide soft labels for weakly-supervised model training. And for inference, we propose two decoding strategies leveraging the advantages of Non-Maximum Suppression (NMS) and CTC decoding. Extensive experiments on benchmark datasets demonstrate the superior performance of our method in text recognition and character localization, even with minimal amounts of character-level annotated line data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助tang采纳,获得10
1秒前
NexusExplorer应助优雅的松鼠采纳,获得10
1秒前
英姑应助二三语逢山外山采纳,获得30
1秒前
Linseed完成签到,获得积分20
2秒前
小马甲应助阮楷瑞采纳,获得10
2秒前
超帅的冬瓜应助hohokuz采纳,获得10
2秒前
12345678发布了新的文献求助10
2秒前
yar应助稳重如冰采纳,获得10
3秒前
天才c完成签到,获得积分10
4秒前
swimming发布了新的文献求助30
4秒前
5秒前
情怀应助浮世一梦采纳,获得10
5秒前
充电宝应助笨蛋研究生采纳,获得10
5秒前
6秒前
打打应助史紫烟采纳,获得10
6秒前
6秒前
赵坤煊完成签到 ,获得积分0
7秒前
7秒前
ray发布了新的文献求助10
10秒前
Singularity应助月蚀六花采纳,获得10
10秒前
10秒前
小二郎应助静越采纳,获得10
10秒前
12秒前
13秒前
夏哥关注了科研通微信公众号
13秒前
14秒前
共享精神应助沉静安荷采纳,获得10
14秒前
John完成签到,获得积分10
15秒前
lzj发布了新的文献求助10
17秒前
Maeth完成签到,获得积分10
18秒前
阮楷瑞发布了新的文献求助10
18秒前
胡乱说兔的熊完成签到,获得积分10
18秒前
会飞的鱼完成签到,获得积分10
19秒前
tang发布了新的文献求助10
21秒前
22秒前
22秒前
ABO完成签到,获得积分10
22秒前
脑洞疼应助刘家小姐姐采纳,获得10
23秒前
阮楷瑞完成签到,获得积分10
24秒前
善学以致用应助淡淡向卉采纳,获得10
24秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4097995
求助须知:如何正确求助?哪些是违规求助? 3635763
关于积分的说明 11524092
捐赠科研通 3345818
什么是DOI,文献DOI怎么找? 1838978
邀请新用户注册赠送积分活动 906425
科研通“疑难数据库(出版商)”最低求助积分说明 823642