已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multimodal Language and Graph Learning of Adsorption Configuration in Catalysis

计算机科学 可解释性 清晰 机器学习 人工智能 图形 理论计算机科学 化学 生物化学
作者
Janghoon Ock,Rishikesh Magar,Akshay Antony,Amir Barati Farimani
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2401.07408
摘要

Adsorption energy, a reactivity descriptor, should be accurately assessed for efficient catalyst screening. This evaluation requires determining the lowest energy across various adsorption configurations on the catalytic surface. While graph neural networks (GNNs) have gained popularity as a machine learning approach for computing the energy of catalyst systems, they rely heavily on atomic spatial coordinates and often lack clarity in their interpretations. Recent advancements in language models have broadened their applicability to predicting catalytic properties, allowing us to bypass the complexities of graph representation. These models are adept at handling textual data, making it possible to incorporate observable features in a human-readable format. However, language models encounter challenges in accurately predicting the energy of adsorption configurations, typically showing a high mean absolute error (MAE) of about 0.71 eV. Our study addresses this limitation by introducing a self-supervised multi-modal learning approach, termed graph-assisted pretraining. This method significantly reduces the MAE to 0.35 eV through a combination of data augmentation, achieving comparable accuracy with DimeNet++ while using 0.4% of its training data size. Furthermore, the Transformer encoder at the core of the language model can provide insights into the feature focus through its attention scores. This analysis shows that our multimodal training effectively redirects the model's attention toward relevant adsorption configurations from adsorbate-related features, enhancing prediction accuracy and interpretability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fl发布了新的文献求助10
1秒前
3秒前
调皮傲易完成签到 ,获得积分10
8秒前
8秒前
小马甲应助YOUNG采纳,获得10
9秒前
10秒前
12秒前
Jasper应助科研通管家采纳,获得10
12秒前
大个应助科研通管家采纳,获得10
12秒前
共享精神应助科研通管家采纳,获得10
12秒前
星辰大海应助科研通管家采纳,获得10
12秒前
李健应助科研通管家采纳,获得10
12秒前
zho应助科研通管家采纳,获得10
12秒前
zho应助科研通管家采纳,获得10
12秒前
Xu完成签到 ,获得积分10
13秒前
小二郎应助清图采纳,获得10
16秒前
科研通AI5应助Vintage采纳,获得10
18秒前
星辰大海应助100采纳,获得10
21秒前
小骆完成签到,获得积分10
25秒前
lixia完成签到 ,获得积分10
33秒前
42秒前
42秒前
小宋发布了新的文献求助10
43秒前
清图发布了新的文献求助10
47秒前
xiaoguo发布了新的文献求助10
55秒前
56秒前
58秒前
hackfeng完成签到,获得积分10
59秒前
1分钟前
100发布了新的文献求助10
1分钟前
1分钟前
skhhh发布了新的文献求助10
1分钟前
1分钟前
1分钟前
桐桐应助kosang采纳,获得10
1分钟前
1分钟前
Leoniko完成签到 ,获得积分10
1分钟前
ambition发布了新的文献求助10
1分钟前
DaLu发布了新的文献求助10
1分钟前
子阅完成签到 ,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Technologies supporting mass customization of apparel: A pilot project 300
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780712
求助须知:如何正确求助?哪些是违规求助? 3326219
关于积分的说明 10226204
捐赠科研通 3041293
什么是DOI,文献DOI怎么找? 1669330
邀请新用户注册赠送积分活动 799040
科研通“疑难数据库(出版商)”最低求助积分说明 758723