The Impacts of Algorithmic Work Assignment on Fairness Perceptions and Productivity: Evidence from Field Experiments

计算机科学 任务(项目管理) 生产力 复制 相关性(法律) 感知 领域(数学) 样品(材料) 运筹学 心理学 经济 数学 统计 化学 管理 色谱法 神经科学 政治学 纯数学 法学 宏观经济学
作者
Bing Bai,Hengchen Dai,Dennis Zhang,Fuqiang Zhang,Haoyuan Hu
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:24 (6): 3060-3078 被引量:66
标识
DOI:10.1287/msom.2022.1120
摘要

Problem definition: We study how algorithmic (versus human-based) task assignment processes change task recipients’ fairness perceptions and productivity. Academic/practical relevance: Since algorithms are widely adopted by businesses and often require human involvement, understanding how humans perceive algorithms is instrumental to the success of algorithm design in operations. Particularly, the growing concern that algorithms may reproduce inequality historically exhibited by humans calls for research about how people perceive the fairness of algorithmic decision making (relative to traditional human-based decision making) and, consequently, adjust their work behaviors. Methodology: In a 15-day-long field experiment with Alibaba Group in a warehouse where workers pick products following orders (or “pick lists”), we randomly assigned half of the workers to receive pick lists from a machine that ostensibly relied on an algorithm to distribute pick lists, and the other half to receive pick lists from a human distributor. Results: Despite that we used the same underlying rule to assign pick lists in both groups, workers perceive the algorithmic (versus human-based) assignment process as fairer by 0.94–1.02 standard deviations. This yields productivity benefits: receiving tasks from an algorithm (versus a human) increases workers’ picking efficiency by 15.56%–17.86%. These findings persist beyond the first day when workers were involved in the experiment, suggesting that our results are not limited to the initial phrase when workers might find algorithmic assignment novel. We replicate the main results in another field experiment involving a nonoverlapping sample of warehouse workers. We also show via online experiments that people in the United States also view algorithmic task assignment as fairer than human-based task assignment. Managerial implications: We demonstrate that algorithms can have broader impacts beyond offering greater efficiency and accuracy than humans: introducing algorithmic assignment processes may enhance fairness perceptions and productivity. This insight can be utilized by managers and algorithm designers to better design and implement algorithm-based decision making in operations. Supplemental Material: The e-companion is available at https://doi.org/10.1287/msom.2022.1120 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王一一发布了新的文献求助10
1秒前
李健的粉丝团团长应助026采纳,获得10
1秒前
掐钰完成签到,获得积分10
1秒前
Windln完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
moony完成签到,获得积分10
3秒前
小七发布了新的文献求助10
3秒前
qingfengnai完成签到,获得积分10
5秒前
有魅力的孤云完成签到 ,获得积分10
5秒前
简单渊思完成签到,获得积分10
6秒前
6秒前
6秒前
zzz2193发布了新的文献求助10
7秒前
蛤王发布了新的文献求助10
7秒前
JamesPei应助许多多采纳,获得10
7秒前
8秒前
9秒前
阿谈完成签到 ,获得积分10
9秒前
科研通AI2S应助zz采纳,获得10
9秒前
ritianjiang发布了新的文献求助10
10秒前
10秒前
10秒前
慕青应助王一一采纳,获得10
10秒前
傲娇的沁完成签到,获得积分10
10秒前
11秒前
11秒前
14秒前
怕孤独的棒球完成签到 ,获得积分10
15秒前
长雁完成签到,获得积分10
15秒前
15秒前
沉默的冬寒完成签到 ,获得积分10
15秒前
英俊的铭应助快乐的凡霜采纳,获得10
16秒前
gaoxin完成签到 ,获得积分10
16秒前
话语发布了新的文献求助10
17秒前
moony发布了新的文献求助80
17秒前
量子星尘发布了新的文献求助10
17秒前
徐先生发布了新的文献求助10
18秒前
18秒前
量子星尘发布了新的文献求助10
18秒前
19秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 25000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5704982
求助须知:如何正确求助?哪些是违规求助? 5160109
关于积分的说明 15243509
捐赠科研通 4858841
什么是DOI,文献DOI怎么找? 2607448
邀请新用户注册赠送积分活动 1558519
关于科研通互助平台的介绍 1516177