Raman spectroscopy for esophageal tumor diagnosis and delineation using machine learning and the portable Raman spectrometer

拉曼光谱 人工智能 食管癌 支持向量机 计算机科学 线性判别分析 生物医学工程 癌症 医学 光学 物理 内科学
作者
Junqing Yang,Pei Xu,Siyi Wu,Zhou Chen,Shiyan Fang,Haibo Xiao,Fengqing Hu,Lianyong Jiang,Lei Wang,Bin Mo,Fangbao Ding,Li Lin,Jian Ye
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier BV]
卷期号:317: 124461-124461 被引量:10
标识
DOI:10.1016/j.saa.2024.124461
摘要

Esophageal cancer is one of the leading causes of cancer-related deaths worldwide. The identification of residual tumor tissues in the surgical margin of esophageal cancer is essential for the treatment and prognosis of cancer patients. But the current diagnostic methods, either pathological frozen section or paraffin section examination, are laborious, time-consuming, and inconvenient. Raman spectroscopy is a label-free and non-invasive analytical technique that provides molecular information with high specificity. Here, we report the use of a portable Raman system and machine learning algorithms to achieve accurate diagnosis of esophageal tumor tissue in surgically resected specimens. We tested five machine learning-based classification methods, including k-Nearest Neighbors, Adaptive Boosting, Random Forest, Principal Component Analysis-Linear Discriminant Analysis, and Support Vector Machine (SVM). Among them, SVM shows the highest accuracy (88.61 %) in classifying the esophageal tumor and normal tissues. The portable Raman system demonstrates robust measurements with an acceptable focal plane shift of up to 3 mm, which enables large-area Raman mapping on resected tissues. Based on this, we finally achieve successful Raman visualization of tumor boundaries on surgical margin specimens, and the Raman measurement time is less than 5 min. This work provides a robust, convenient, accurate, and cost-effective tool for the diagnosis of esophageal cancer tumors, advancing toward Raman-based clinical intraoperative applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Linseed完成签到,获得积分20
1秒前
小马甲应助阮楷瑞采纳,获得10
1秒前
超帅的冬瓜应助hohokuz采纳,获得10
1秒前
12345678发布了新的文献求助10
1秒前
yar应助稳重如冰采纳,获得10
2秒前
天才c完成签到,获得积分10
3秒前
swimming发布了新的文献求助30
3秒前
4秒前
情怀应助浮世一梦采纳,获得10
4秒前
充电宝应助笨蛋研究生采纳,获得10
4秒前
5秒前
打打应助史紫烟采纳,获得10
5秒前
5秒前
赵坤煊完成签到 ,获得积分0
6秒前
6秒前
ray发布了新的文献求助10
9秒前
Singularity应助月蚀六花采纳,获得10
9秒前
9秒前
小二郎应助静越采纳,获得10
9秒前
11秒前
12秒前
夏哥关注了科研通微信公众号
12秒前
13秒前
共享精神应助沉静安荷采纳,获得10
13秒前
John完成签到,获得积分10
14秒前
lzj发布了新的文献求助10
16秒前
Maeth完成签到,获得积分10
17秒前
阮楷瑞发布了新的文献求助10
17秒前
胡乱说兔的熊完成签到,获得积分10
17秒前
会飞的鱼完成签到,获得积分10
18秒前
tang发布了新的文献求助10
20秒前
21秒前
21秒前
ABO完成签到,获得积分10
21秒前
脑洞疼应助刘家小姐姐采纳,获得10
22秒前
阮楷瑞完成签到,获得积分10
23秒前
善学以致用应助淡淡向卉采纳,获得10
23秒前
JamesPei应助内向的梦蕊采纳,获得10
23秒前
可爱的函函应助月蚀六花采纳,获得10
23秒前
26秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4097995
求助须知:如何正确求助?哪些是违规求助? 3635763
关于积分的说明 11524092
捐赠科研通 3345818
什么是DOI,文献DOI怎么找? 1838978
邀请新用户注册赠送积分活动 906425
科研通“疑难数据库(出版商)”最低求助积分说明 823642