Raman spectroscopy for esophageal tumor diagnosis and delineation using machine learning and the portable Raman spectrometer

拉曼光谱 人工智能 食管癌 支持向量机 计算机科学 线性判别分析 生物医学工程 癌症 医学 光学 物理 内科学
作者
Jing Yang,Ping Xu,Siyi Wu,Zhou Chen,Shiyan Fang,Haibo Xiao,Fengqing Hu,Lingyong Jiang,Lei Wang,Bin Mo,Fang Ding,Liangyu Lin,Jian Ye
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier BV]
卷期号:317: 124461-124461
标识
DOI:10.1016/j.saa.2024.124461
摘要

Esophageal cancer is one of the leading causes of cancer-related deaths worldwide. The identification of residual tumor tissues in the surgical margin of esophageal cancer is essential for the treatment and prognosis of cancer patients. But the current diagnostic methods, either pathological frozen section or paraffin section examination, are laborious, time-consuming, and inconvenient. Raman spectroscopy is a label-free and non-invasive analytical technique that provides molecular information with high specificity. Here, we report the use of a portable Raman system and machine learning algorithms to achieve accurate diagnosis of esophageal tumor tissue in surgically resected specimens. We tested five machine learning-based classification methods, including k-Nearest Neighbors, Adaptive Boosting, Random Forest, Principal Component Analysis-Linear Discriminant Analysis, and Support Vector Machine (SVM). Among them, SVM shows the highest accuracy (88.61 %) in classifying the esophageal tumor and normal tissues. The portable Raman system demonstrates robust measurements with an acceptable focal plane shift of up to 3 mm, which enables large-area Raman mapping on resected tissues. Based on this, we finally achieve successful Raman visualization of tumor boundaries on surgical margin specimens, and the Raman measurement time is less than 5 min. This work provides a robust, convenient, accurate, and cost-effective tool for the diagnosis of esophageal cancer tumors, advancing toward Raman-based clinical intraoperative applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小王加油啊啊啊完成签到 ,获得积分10
刚刚
iuhgnor发布了新的文献求助10
1秒前
yuaner发布了新的文献求助10
1秒前
打工仔发布了新的文献求助10
2秒前
2秒前
55155255完成签到,获得积分10
2秒前
Tina_lai发布了新的文献求助10
3秒前
不懈奋进应助标致如之采纳,获得30
5秒前
赛因斯完成签到,获得积分10
6秒前
6秒前
123发布了新的文献求助10
7秒前
iuhgnor发布了新的文献求助10
9秒前
JC完成签到,获得积分10
9秒前
9秒前
zys发布了新的文献求助10
10秒前
华仔应助姜茶采纳,获得10
12秒前
科研通AI5应助cxy采纳,获得10
14秒前
15秒前
CC应助大郎采纳,获得10
16秒前
风中远航发布了新的文献求助10
16秒前
duckweedyan完成签到,获得积分10
17秒前
19秒前
风中远航完成签到,获得积分20
21秒前
充电宝应助五月采纳,获得10
21秒前
22秒前
Olivia发布了新的文献求助30
22秒前
姜茶发布了新的文献求助10
23秒前
上官若男应助3D采纳,获得10
25秒前
25秒前
李健应助科研通管家采纳,获得10
25秒前
英俊的铭应助科研通管家采纳,获得10
25秒前
慕青应助科研通管家采纳,获得10
25秒前
大模型应助科研通管家采纳,获得10
25秒前
CCC发布了新的文献求助10
26秒前
28秒前
科研通AI5应助科研兄采纳,获得10
29秒前
Li完成签到,获得积分10
30秒前
candice完成签到 ,获得积分10
31秒前
传奇3应助kingripple采纳,获得10
36秒前
37秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805315
求助须知:如何正确求助?哪些是违规求助? 3350274
关于积分的说明 10348210
捐赠科研通 3066165
什么是DOI,文献DOI怎么找? 1683589
邀请新用户注册赠送积分活动 809064
科研通“疑难数据库(出版商)”最低求助积分说明 765214