Efficient Carrier Multiplication in Self-Powered Near-Ultraviolet γ-InSe/Graphene Heterostructure Photodetector with External Quantum Efficiency Exceeding 161%

光电探测器 异质结 量子效率 光电子学 石墨烯 紫外线 乘法(音乐) 材料科学 纳米技术 物理 声学
作者
Yuanzheng Li,Jia-Yu Pan,Chuxin Yan,Jixiu Li,Wei Xin,Yutong Zhang,Weizhen Liu,Xinfeng Liu,Haiyang Xu,Yichun Liu
出处
期刊:Nano Letters [American Chemical Society]
卷期号:24 (24): 7252-7260 被引量:20
标识
DOI:10.1021/acs.nanolett.4c01238
摘要

Carrier multiplication (CM) in semiconductors, the process of absorbing a single high-energy photon to form two or more electron–hole pairs, offers great potential for the high-response detection of high-energy photons in the ultraviolet spectrum. However, compared to two-dimensional semiconductors, conventional bulk semiconductors not only face integration and flexibility bottlenecks but also exhibit inferior CM performance. To attain efficient CM for ultraviolet detection, we designed a two-terminal photodetector featuring a unilateral Schottky junction based on a two-dimensional γ-InSe/graphene heterostructure. Benefiting from a strong built-in electric field, the photogenerated high-energy electrons in γ-InSe, an ideal ultraviolet light-absorbing layer, can efficiently transfer to graphene without cooling. It results in efficient CM within the graphene, yielding an ultrahigh responsivity of 468 mA/W and a record-high external quantum efficiency of 161.2% when it is exposed to 360 nm light at zero bias. This work provides valuable insights into developing next-generation ultraviolet photodetectors with high performance and low-power consumption.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dou发布了新的文献求助10
1秒前
宗语雪完成签到,获得积分10
1秒前
tjfwg发布了新的文献求助10
1秒前
李清水完成签到,获得积分10
3秒前
5秒前
ding完成签到,获得积分10
6秒前
烟花应助大秀子采纳,获得10
7秒前
脑洞疼应助包容沛蓝采纳,获得10
7秒前
大个应助Fu采纳,获得10
8秒前
khaosyi完成签到 ,获得积分10
10秒前
10秒前
11秒前
12秒前
13201099463完成签到,获得积分10
13秒前
急急急完成签到,获得积分10
15秒前
15秒前
ww发布了新的文献求助10
16秒前
lin完成签到,获得积分10
16秒前
细心枫叶发布了新的文献求助10
17秒前
18秒前
Lucas应助123456杯可乐采纳,获得10
19秒前
凯卮完成签到,获得积分10
20秒前
21秒前
song发布了新的文献求助10
21秒前
Hello应助gf采纳,获得10
21秒前
SYLH应助科研通管家采纳,获得10
23秒前
李健应助科研通管家采纳,获得10
23秒前
桐桐应助科研通管家采纳,获得10
23秒前
Orange应助科研通管家采纳,获得10
23秒前
23秒前
23秒前
23秒前
liuz53发布了新的文献求助10
23秒前
SYLH应助科研通管家采纳,获得30
23秒前
烟花应助科研通管家采纳,获得10
24秒前
24秒前
大个应助科研通管家采纳,获得10
24秒前
24秒前
24秒前
科研通AI5应助科研通管家采纳,获得10
24秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Deciphering Earth's History: the Practice of Stratigraphy 200
New Syntheses with Carbon Monoxide 200
Quanterion Automated Databook NPRD-2023 200
Interpretability and Explainability in AI Using Python 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835028
求助须知:如何正确求助?哪些是违规求助? 3377507
关于积分的说明 10498840
捐赠科研通 3096984
什么是DOI,文献DOI怎么找? 1705397
邀请新用户注册赠送积分活动 820539
科研通“疑难数据库(出版商)”最低求助积分说明 772123