Parameter-Efficient Multi-classification Software Defect Detection Method Based on Pre-trained LLMs

计算机科学 软件 人工智能 操作系统
作者
Xuanye Wang,Lu Lu,Zhanyu Yang,Qingyan Tian,Haisha Lin
出处
期刊:International Journal of Computational Intelligence Systems [Springer Nature]
卷期号:17 (1) 被引量:2
标识
DOI:10.1007/s44196-024-00551-3
摘要

Abstract Software Defect Detection (SDD) has always been critical to the development life cycle. A stable defect detection system can not only alleviate the workload of software testers but also enhance the overall efficiency of software development. Researchers have recently proposed various artificial intelligence-based SDD methods and achieved significant advancements. However, these methods still exhibit limitations in terms of reliability and usability. Therefore, we introduce MSDD-(IA) 3 , a novel framework leveraging the pre-trained CodeT5+ and (IA) 3 for parameter-efficient multi-classification SDD. This framework constructs a detection model based on pre-trained CodeT5+ to generate code representations while capturing defect-prone features. Considering the high overhead of pre-trained LLMs, we injects (IA) 3 vectors into specific layers, where only these injected parameters are updated to reduce the training cost. Furthermore, leveraging the properties of the pre-trained CodeT5+, we design a novel feature sequence that enriches the input data through the combination of source code with Natural Language (NL)-based expert metrics. Our experimental results on 64K real-world Python snippets show that MSDD-(IA) 3 demonstrates superior performance compared to state-of-the-art SDD methods, including PM2-CNN, in terms of F1-weighted, Recall-weighted, Precision-weighted, and Matthews Correlation Coefficient. Notably, the training parameters of MSDD-(IA) 3 are only 0.04% of those of the original CodeT5+. Our experimental data and code can be available at ( https://gitee.com/wxyzjp123/msdd-ia3/ ).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
生活不是电影完成签到,获得积分10
刚刚
小猪坨完成签到,获得积分10
刚刚
今后应助诚心淇采纳,获得10
1秒前
1秒前
鬼火发布了新的文献求助10
2秒前
gxy完成签到,获得积分10
2秒前
情怀应助阿文在读研采纳,获得10
3秒前
Honor发布了新的文献求助10
3秒前
3秒前
3秒前
远方完成签到,获得积分10
4秒前
科研通AI5应助Eason小川采纳,获得10
4秒前
斯文败类应助稳重老魏采纳,获得10
5秒前
5秒前
拼搏冥王星完成签到,获得积分10
6秒前
6秒前
Jasper应助cmy采纳,获得10
7秒前
辛束完成签到,获得积分10
7秒前
李霞客完成签到,获得积分10
7秒前
xiaoE完成签到,获得积分10
8秒前
anthea完成签到 ,获得积分10
8秒前
番薯圆完成签到,获得积分10
8秒前
科研小白发布了新的文献求助10
8秒前
kidult发布了新的文献求助10
8秒前
天真的乌完成签到 ,获得积分10
9秒前
酷波er应助Kra采纳,获得10
9秒前
嘚嘚发布了新的文献求助10
9秒前
踏实的惋庭完成签到,获得积分20
9秒前
Cao完成签到 ,获得积分10
9秒前
Hanmos3624完成签到,获得积分10
9秒前
工仔完成签到,获得积分10
11秒前
HX完成签到,获得积分10
11秒前
英姑应助Honor采纳,获得10
12秒前
Yan0909完成签到,获得积分10
13秒前
13秒前
汉堡包应助Hanmos3624采纳,获得10
14秒前
桂桂阿云发布了新的文献求助10
15秒前
dabihu发布了新的文献求助10
15秒前
俏皮的安萱给俏皮的安萱的求助进行了留言
16秒前
HX发布了新的文献求助10
16秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
On translated images, stereotypes and disciplines 200
New Syntheses with Carbon Monoxide 200
Faber on mechanics of patent claim drafting 200
Quanterion Automated Databook NPRD-2023 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834344
求助须知:如何正确求助?哪些是违规求助? 3376864
关于积分的说明 10495644
捐赠科研通 3096375
什么是DOI,文献DOI怎么找? 1704930
邀请新用户注册赠送积分活动 820309
科研通“疑难数据库(出版商)”最低求助积分说明 771966