Experimental testing and predictive machine learning to determine the mechanical characteristics of corroded reinforcing steel

机器学习 计算机科学 领域(数学) 自适应神经模糊推理系统 极限抗拉强度 人工智能 可靠性(半导体) 模糊逻辑 结构工程 工程类 材料科学 数学 模糊控制系统 复合材料 纯数学 功率(物理) 物理 量子力学
作者
Benjamin Matthews,Alessandro Palermo,Tom Logan,Allan Scott
出处
期刊:Construction and Building Materials [Elsevier]
卷期号:438: 137023-137023 被引量:7
标识
DOI:10.1016/j.conbuildmat.2024.137023
摘要

Chloride-induced deterioration of reinforcing steel bars has become a densely researched topic over the past several decades because of the severe ramifications to the structural reliability of aging infrastructure. The ever-growing volume of experimental and field data continually enables advances in the field through deeper micro-macro analyses and various modeling applications. The purpose of this paper is twofold. First, an experimental program is introduced, describing the tensile testing of 284 artificially corroded, 25 mm diameter deformed Grade500E reinforcing bars. Secondly, the mechanical characteristics of corroded bars are predicted through a collection of regression-based machine learning algorithms. Models are trained and tested on a database of 1387 tensile tests compiled from 25 other experimental programs available in the literature. The complete database includes 19 input parameters used to predict nine key mechanical properties of the corroded steel bars. Nine machine learning models were selected from a balanced assortment of algorithm typologies to determine the most appropriate methodology for each response variable. The adaptive-neuro fuzzy inference system (ANFIS) model was found to have the strongest individual predictive ability across all models. Meanwhile, ensemble tree-based learning algorithms categorically provided the most consistently high-performing models over the selected response variables.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助xmhxpz采纳,获得10
刚刚
刚刚
minsu发布了新的文献求助10
刚刚
1秒前
1秒前
温暖宛筠发布了新的文献求助10
1秒前
2秒前
2秒前
尖尖完成签到,获得积分10
2秒前
苏苏苏苏完成签到,获得积分10
2秒前
小云发布了新的文献求助10
4秒前
熙欢完成签到,获得积分10
4秒前
顺心绮兰发布了新的文献求助10
4秒前
nixiaozhi发布了新的文献求助10
5秒前
moli发布了新的文献求助30
5秒前
兔兔完成签到,获得积分10
5秒前
仙妮宝贝完成签到,获得积分20
5秒前
科研通AI6应助EASA采纳,获得10
5秒前
5秒前
6秒前
qq完成签到,获得积分20
6秒前
sindex完成签到,获得积分10
6秒前
6秒前
科研通AI6应助布布采纳,获得10
6秒前
7秒前
7秒前
小蘑菇应助冉江波采纳,获得10
7秒前
7秒前
8秒前
背对南通发布了新的文献求助50
8秒前
9秒前
w__k完成签到 ,获得积分10
9秒前
tomorrow发布了新的文献求助10
9秒前
单身的凡雁完成签到 ,获得积分20
9秒前
嘻哈发布了新的文献求助10
9秒前
开朗的板凳完成签到,获得积分10
10秒前
10秒前
10秒前
肉鸡应助Yauthaeo采纳,获得10
11秒前
levie发布了新的文献求助20
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5546479
求助须知:如何正确求助?哪些是违规求助? 4632273
关于积分的说明 14626188
捐赠科研通 4573977
什么是DOI,文献DOI怎么找? 2507901
邀请新用户注册赠送积分活动 1484538
关于科研通互助平台的介绍 1455722