Unsupervised Degradation Aware and Representation for Real-World Remote Sensing Image Super-Resolution

遥感 计算机科学 降级(电信) 图像分辨率 代表(政治) 人工智能 高光谱成像 计算机视觉 模式识别(心理学) 地质学 电信 政治学 政治 法学
作者
Wenzhong Guo,Wu-Ding Weng,Guangyong Chen,Jian-Nan Su,Min Gan,C. L. Philip Chen
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-13
标识
DOI:10.1109/tgrs.2024.3407844
摘要

Blind super-resolution (BlindSR) has recently attracted attention in the field of remote sensing. Due to the lack of paired data, most works assume that the acquired remote sensing images are high-resolution (HR) and use predefined degradation models to synthesize low-resolution (LR) images for training and evaluation. However, these acquired remote sensing images are often degraded by various factors, which still require super-resolution reconstruction to meet practical needs. Using them as ground truth images will limit the model's ability to restore fine details, resulting in blurry and noisy reconstructions. To overcome these limitations, we propose an unsupervised degradation-aware network which transforms natural images into the degraded domain as real-world remote sensing images. It uses natural images containing rich texture information as a reference for fine-grained restoration of the network, enabling the network to produce clearer reconstructions. Furthermore, we discovered the remarkable capability of patch-wise discriminator to perceive the degradation type of different regions within the acquired remote sensing image. Inspired by this finding, we design a novel degradation representation module (DRM) that can estimate the degradation information from LR images and guide the network to perform adaptive restoration. Comprehensive experimental results demonstrate that our proposed unsupervised blind super-resolution framework (UDASR) achieves state-of-the-art restoration performance. Our code and pre-trained models have been uploaded to GitHub† for validation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助奶油小饼干采纳,获得10
1秒前
2秒前
2秒前
英俊的铭应助努力熊熊采纳,获得10
2秒前
深情安青应助zakarya采纳,获得10
3秒前
3秒前
SciGPT应助shuyou采纳,获得10
4秒前
柴桑青木应助Gisse采纳,获得100
4秒前
5秒前
5秒前
Lucas应助23采纳,获得10
5秒前
6秒前
8秒前
斯文友桃发布了新的文献求助10
8秒前
aaa发布了新的文献求助10
9秒前
9秒前
9秒前
yyshhcyuwhegy发布了新的文献求助10
10秒前
10秒前
Li发布了新的文献求助10
11秒前
zjiang发布了新的文献求助10
11秒前
Wang完成签到,获得积分10
12秒前
McQ发布了新的文献求助10
12秒前
12秒前
13秒前
魔幻安雁发布了新的文献求助10
13秒前
14秒前
郑嘻嘻发布了新的文献求助10
15秒前
16秒前
16秒前
洪武发布了新的文献求助10
16秒前
聪慧小霜发布了新的文献求助10
16秒前
17秒前
17秒前
丘比特应助科研通管家采纳,获得10
18秒前
Ava应助银点采纳,获得10
18秒前
小二郎应助科研通管家采纳,获得10
18秒前
安戈应助科研通管家采纳,获得20
18秒前
18秒前
安戈应助科研通管家采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 3000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
International socialism & Australian labour : the Left in Australia, 1919-1939 400
Bulletin de la Societe Chimique de France 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Metals, Minerals, and Society 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4284706
求助须知:如何正确求助?哪些是违规求助? 3812130
关于积分的说明 11941282
捐赠科研通 3458760
什么是DOI,文献DOI怎么找? 1896806
邀请新用户注册赠送积分活动 945498
科研通“疑难数据库(出版商)”最低求助积分说明 849319