亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Unsupervised Degradation Aware and Representation for Real-World Remote Sensing Image Super-Resolution

遥感 计算机科学 降级(电信) 图像分辨率 代表(政治) 人工智能 高光谱成像 计算机视觉 模式识别(心理学) 地质学 电信 政治学 政治 法学
作者
Wenzhong Guo,Wu-Ding Weng,Guangyong Chen,Jian-Nan Su,Min Gan,C. L. Philip Chen
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-13
标识
DOI:10.1109/tgrs.2024.3407844
摘要

Blind super-resolution (BlindSR) has recently attracted attention in the field of remote sensing. Due to the lack of paired data, most works assume that the acquired remote sensing images are high-resolution (HR) and use predefined degradation models to synthesize low-resolution (LR) images for training and evaluation. However, these acquired remote sensing images are often degraded by various factors, which still require super-resolution reconstruction to meet practical needs. Using them as ground truth images will limit the model's ability to restore fine details, resulting in blurry and noisy reconstructions. To overcome these limitations, we propose an unsupervised degradation-aware network which transforms natural images into the degraded domain as real-world remote sensing images. It uses natural images containing rich texture information as a reference for fine-grained restoration of the network, enabling the network to produce clearer reconstructions. Furthermore, we discovered the remarkable capability of patch-wise discriminator to perceive the degradation type of different regions within the acquired remote sensing image. Inspired by this finding, we design a novel degradation representation module (DRM) that can estimate the degradation information from LR images and guide the network to perform adaptive restoration. Comprehensive experimental results demonstrate that our proposed unsupervised blind super-resolution framework (UDASR) achieves state-of-the-art restoration performance. Our code and pre-trained models have been uploaded to GitHub† for validation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jyy应助科研通管家采纳,获得10
7秒前
lani完成签到 ,获得积分10
9秒前
18秒前
26秒前
Aimee完成签到,获得积分10
31秒前
SciGPT应助清脆的海菡采纳,获得10
43秒前
44秒前
干净怀寒发布了新的文献求助10
48秒前
ZTLlele完成签到 ,获得积分10
58秒前
干净怀寒完成签到,获得积分20
1分钟前
1分钟前
muhum完成签到 ,获得积分10
1分钟前
ordin完成签到,获得积分10
1分钟前
1分钟前
1分钟前
cheers发布了新的文献求助10
1分钟前
Cynthia完成签到 ,获得积分10
1分钟前
Hello应助香蕉猴子啦啦啦采纳,获得10
1分钟前
1分钟前
2分钟前
jyy应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
venom给xiaocui的求助进行了留言
2分钟前
姚老表完成签到,获得积分10
2分钟前
zsj完成签到 ,获得积分10
2分钟前
NanFeng发布了新的文献求助10
2分钟前
2分钟前
2分钟前
研友_8RyzBZ完成签到,获得积分20
2分钟前
yss发布了新的文献求助10
2分钟前
ceeray23发布了新的文献求助20
3分钟前
3分钟前
健壮的寻绿完成签到 ,获得积分10
3分钟前
xing发布了新的文献求助10
3分钟前
NanFeng完成签到,获得积分10
3分钟前
3分钟前
欢呼小蚂蚁完成签到,获得积分20
3分钟前
乐乐应助yss采纳,获得10
3分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5126925
求助须知:如何正确求助?哪些是违规求助? 4330203
关于积分的说明 13493049
捐赠科研通 4165627
什么是DOI,文献DOI怎么找? 2283474
邀请新用户注册赠送积分活动 1284513
关于科研通互助平台的介绍 1224344