已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Lipid Droplet–Mitochondria Contacts in Health and Disease

线粒体 生物 背景(考古学) 细胞生物学 脂质代谢 代谢途径 新陈代谢 生物化学 古生物学
作者
Hongjun Fan,Yanjie Tan
出处
期刊:International Journal of Molecular Sciences [Multidisciplinary Digital Publishing Institute]
卷期号:25 (13): 6878-6878 被引量:2
标识
DOI:10.3390/ijms25136878
摘要

The orchestration of cellular metabolism and redox balance is a complex, multifaceted process crucial for maintaining cellular homeostasis. Lipid droplets (LDs), once considered inert storage depots for neutral lipids, are now recognized as dynamic organelles critical in lipid metabolism and energy regulation. Mitochondria, the powerhouses of the cell, play a central role in energy production, metabolic pathways, and redox signaling. The physical and functional contacts between LDs and mitochondria facilitate a direct transfer of lipids, primarily fatty acids, which are crucial for mitochondrial β-oxidation, thus influencing energy homeostasis and cellular health. This review highlights recent advances in understanding the mechanisms governing LD–mitochondria interactions and their regulation, drawing attention to proteins and pathways that mediate these contacts. We discuss the physiological relevance of these interactions, emphasizing their role in maintaining energy and redox balance within cells, and how these processes are critical in response to metabolic demands and stress conditions. Furthermore, we explore the pathological implications of dysregulated LD–mitochondria interactions, particularly in the context of metabolic diseases such as obesity, diabetes, and non-alcoholic fatty liver disease, and their potential links to cardiovascular and neurodegenerative diseases. Conclusively, this review provides a comprehensive overview of the current understanding of LD–mitochondria interactions, underscoring their significance in cellular metabolism and suggesting future research directions that could unveil novel therapeutic targets for metabolic and degenerative diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小菡菡完成签到,获得积分10
5秒前
paul发布了新的文献求助10
5秒前
12秒前
陈文清完成签到 ,获得积分10
17秒前
orixero应助木鱼二丁目采纳,获得80
18秒前
nino完成签到,获得积分0
22秒前
上官完成签到 ,获得积分10
22秒前
22秒前
陈文清关注了科研通微信公众号
27秒前
gyh完成签到,获得积分10
28秒前
CipherSage应助月光采纳,获得30
30秒前
yaya完成签到 ,获得积分10
32秒前
Xx完成签到 ,获得积分10
34秒前
79完成签到 ,获得积分10
34秒前
36秒前
故意的映波完成签到,获得积分10
39秒前
40秒前
大恶魔宝拉完成签到,获得积分20
44秒前
魁拔蛮吉完成签到 ,获得积分10
44秒前
fhh发布了新的文献求助10
46秒前
47秒前
称心曼安完成签到 ,获得积分10
47秒前
chaos完成签到 ,获得积分10
48秒前
科研通AI5应助科研通管家采纳,获得10
48秒前
科研通AI5应助科研通管家采纳,获得10
48秒前
stife32应助科研通管家采纳,获得10
48秒前
48秒前
49秒前
123完成签到,获得积分10
51秒前
666完成签到 ,获得积分10
51秒前
汪汪队立大功完成签到,获得积分10
52秒前
53秒前
CCC发布了新的文献求助10
53秒前
JacekYu完成签到 ,获得积分10
57秒前
Gigi完成签到,获得积分10
59秒前
小张完成签到 ,获得积分10
1分钟前
可靠的安荷完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
精英刺客发布了新的文献求助30
1分钟前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Effect of deresuscitation management vs. usual care on ventilator-free days in patients with abdominal septic shock 200
Erectile dysfunction From bench to bedside 200
Advanced Introduction to Behavioral Law and Economics 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3824866
求助须知:如何正确求助?哪些是违规求助? 3367265
关于积分的说明 10444831
捐赠科研通 3086477
什么是DOI,文献DOI怎么找? 1698062
邀请新用户注册赠送积分活动 816632
科研通“疑难数据库(出版商)”最低求助积分说明 769848