Set of Diverse Queries with Uncertainty Regularization for Composed Image Retrieval

计算机科学 图像检索 正规化(语言学) 图像(数学) 情报检索 图像处理 集合(抽象数据类型) 人工智能 程序设计语言
作者
Yahui Xu,Jiwei Wei,Yi Bin,Yang Yang,Zeyu Ma,Heng Tao Shen
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (10): 10494-10506
标识
DOI:10.1109/tcsvt.2024.3401006
摘要

Composed image retrieval aims to search a target image by concurrently understanding the composed inputs with a reference image and the complementary modification text. It aims to find a shared latent space where the representation of the composed inputs is close to the desired target image. Most previous methods capture the one-to-one correspondence between the composed inputs and target image, which encodes the composed inputs and the target image into single points in the feature space. However, the one-to-one correspondence cannot effectively handle this task due to the inherent ambiguity problem arising from the various semantic meanings and data uncertainty. Specifically, the composed inputs and target image always exhibit various semantic meanings, affecting the retrieval results. Moreover, given the composed inputs (resp. target image), there are multiple target images (resp. composed inputs) that equally make sense. In this paper, we propose a novel method termed Set of Diverse Queries with Uncertainty Regularization (SDQUR) to solve such inherent ambiguity problem. First, we utilize diverse queries to adaptively aggregate the composed inputs and target image into multiple deterministic embeddings that capture different semantic meanings in the triplet affecting the retrieval process. It can exploit the deterministic many-to-many correspondence within each triple through these set-based queries. Moreover, we provide an uncertainty regularization module to encode the composed inputs and target image into gaussian distribution. Multiple potential positive candidates are sampled from the distribution for probabilistic many-to-many correspondence. Through the complementary deterministic and probabilistic many-to-many correspondence manner, we achieve consistent improvements on the standard FashionIQ, CIRR, and Shoes benchmarks, surpassing the state-of-the-art methods by a large margin.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助坚定的傲旋采纳,获得10
刚刚
今后应助Bambi采纳,获得10
7秒前
June-ho完成签到,获得积分10
7秒前
Dr大壮发布了新的文献求助10
8秒前
jokery完成签到,获得积分10
8秒前
orixero应助张文康采纳,获得10
10秒前
南风发布了新的文献求助100
10秒前
11秒前
12秒前
12秒前
小蘑菇应助博修采纳,获得10
13秒前
13秒前
顺心牛排完成签到,获得积分10
15秒前
赘婿应助机灵的小蘑菇采纳,获得10
15秒前
酷波er应助oy采纳,获得10
15秒前
16秒前
领导范儿应助233采纳,获得10
16秒前
ding应助233采纳,获得10
16秒前
dsaifjs发布了新的文献求助10
16秒前
17秒前
18秒前
aaaaa发布了新的文献求助10
18秒前
zzmy发布了新的文献求助10
18秒前
典雅问寒应助JMao采纳,获得10
19秒前
19秒前
xwwisher完成签到 ,获得积分10
19秒前
Hello应助郑林采纳,获得10
19秒前
20秒前
20秒前
情怀应助奶昔采纳,获得20
22秒前
JamesPei应助ma采纳,获得10
22秒前
赘婿应助dsaifjs采纳,获得10
22秒前
大模型应助潇洒映冬采纳,获得10
22秒前
科研小风发布了新的文献求助30
22秒前
23秒前
感动的尔蓝完成签到,获得积分10
23秒前
lihuanmoon完成签到,获得积分10
23秒前
liutao发布了新的文献求助10
24秒前
25秒前
负责的元柏完成签到,获得积分20
25秒前
高分求助中
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
《続天台宗全書・史伝1 天台大師伝注釈類》 300
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3840402
求助须知:如何正确求助?哪些是违规求助? 3382533
关于积分的说明 10524663
捐赠科研通 3102083
什么是DOI,文献DOI怎么找? 1708631
邀请新用户注册赠送积分活动 822602
科研通“疑难数据库(出版商)”最低求助积分说明 773428