Connectomic disturbances underlying insomnia disorder and predictors of treatment response

接收机工作特性 磁共振成像 磁共振弥散成像 医学 部分各向异性 失眠症 默认模式网络 异常 功能连接 心理学 听力学 内科学 神经科学 精神科 放射科
作者
Qian Lu,Wentong Zhang,Hailang Yan,Negar Mansouri,Onur Tanglay,Karol Osipowicz,Angus W. Joyce,Isabella M. Young,Xia Zhang,Stéphane Doyen,Michael E. Sughrue,Chuan He
出处
期刊:Frontiers in Human Neuroscience [Frontiers Media]
卷期号:16 被引量:7
标识
DOI:10.3389/fnhum.2022.960350
摘要

Despite its prevalence, insomnia disorder (ID) remains poorly understood. In this study, we used machine learning to analyze the functional connectivity (FC) disturbances underlying ID, and identify potential predictors of treatment response through recurrent transcranial magnetic stimulation (rTMS) and pharmacotherapy.51 adult patients with chronic insomnia and 42 healthy age and education matched controls underwent baseline anatomical T1 magnetic resonance imaging (MRI), resting-stage functional MRI (rsfMRI), and diffusion weighted imaging (DWI). Imaging was repeated for 24 ID patients following four weeks of treatment with pharmacotherapy, with or without rTMS. A recently developed machine learning technique, Hollow Tree Super (HoTS) was used to classify subjects into ID and control groups based on their FC, and derive network and parcel-based FC features contributing to each model. The number of FC anomalies within each network was also compared between responders and non-responders using median absolute deviation at baseline and follow-up.Subjects were classified into ID and control with an area under the receiver operating characteristic curve (AUC-ROC) of 0.828. Baseline FC anomaly counts were higher in responders than non-responders. Response as measured by the Insomnia Severity Index (ISI) was associated with a decrease in anomaly counts across all networks, while all networks showed an increase in anomaly counts when response was measured using the Pittsburgh Sleep Quality Index. Overall, responders also showed greater change in all networks, with the Default Mode Network demonstrating the greatest change.Machine learning analysis into the functional connectome in ID may provide useful insight into diagnostic and therapeutic targets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助啦啦啦啦啦采纳,获得10
3秒前
领导范儿应助miaojiakun采纳,获得30
3秒前
tomato完成签到,获得积分10
4秒前
科目三应助小巧初蓝采纳,获得10
4秒前
天冬发布了新的文献求助10
4秒前
小蘑菇应助陈永伟采纳,获得10
5秒前
陈梦鼠完成签到,获得积分10
6秒前
splaker7完成签到,获得积分10
6秒前
Yili完成签到,获得积分20
6秒前
大聪明完成签到,获得积分10
7秒前
隐形的宝宝完成签到,获得积分10
7秒前
嗯嗯完成签到 ,获得积分10
9秒前
刘shuchang完成签到 ,获得积分10
9秒前
9秒前
9秒前
9秒前
博伦llll完成签到,获得积分20
10秒前
11秒前
子车钧完成签到,获得积分20
11秒前
Hello应助Sijie采纳,获得10
12秒前
Yili发布了新的文献求助10
12秒前
FashionBoy应助廾匸采纳,获得10
12秒前
大聪明发布了新的文献求助10
12秒前
12秒前
Lily发布了新的文献求助10
13秒前
洁净的天思完成签到,获得积分10
13秒前
广广发布了新的文献求助10
13秒前
13秒前
博伦llll发布了新的文献求助10
16秒前
18秒前
18秒前
天涯明月刀完成签到,获得积分10
19秒前
wanqiu完成签到,获得积分10
19秒前
monicaaaa发布了新的文献求助10
20秒前
21秒前
21秒前
22秒前
22秒前
23秒前
Bonnienuit发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5170420
求助须知:如何正确求助?哪些是违规求助? 4361183
关于积分的说明 13578837
捐赠科研通 4208380
什么是DOI,文献DOI怎么找? 2308143
邀请新用户注册赠送积分活动 1307537
关于科研通互助平台的介绍 1254343