已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Indoor Point Cloud Segmentation Using a Modified Region Growing Algorithm and Accurate Normal Estimation

点云 算法 计算机科学 人工智能 估计员 点(几何) 分割 曲率 数学 统计 几何学
作者
Wei Wang,Yi Zhang,Gengyu Ge,Qin Jiang,Yang Wang,HU Li-he
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 42510-42520 被引量:7
标识
DOI:10.1109/access.2023.3270709
摘要

With the development of 3D sensors, 3D point cloud data can now be obtained conveniently, which has made the development of automatic point cloud data processing technology crucial. Region growing is a commonly used algorithm to segment point cloud, which greatly depends on the accuracy of point normals and requires the tuning of two thresholds; namely, the increment threshold of curvature (σ th ) and normal angles (θ th ). In this paper, we improve the region growing algorithm in two ways: Accurate normal estimation and strengthening the region growing criteria. For the first aspect, principal component analysis (PCA) is utilized to estimate the initial normals of the point cloud. Then, the points are divided into regular points (RP) and sharp feature points (SFP), according to their initial normals. A robust estimator-based PCA is then applied to refine the SFP normals. For the latter aspect, non-connective points are detected according to shared neighbor points, and non-coplanar points are determined by comparing the residual with a robust scale of it. In addition, σ th is set as the 95 th percentile of curvature, allowing for easier parameter adjustment. Finally, the segmentation effect of the proposed method is evaluated through internal and external indices. The results indicate that the proposed method can accurately estimate the point normals within an acceptable time, and can obtain a better segmentation result than the classic PCA-based region growing algorithm and advanced DetMM-based methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
光盘行动发布了新的文献求助10
刚刚
1秒前
Wu完成签到,获得积分10
2秒前
银河打工人应助wangliangyu采纳,获得10
2秒前
hl发布了新的文献求助10
3秒前
花开富贵完成签到,获得积分10
4秒前
Leon发布了新的文献求助10
5秒前
bo完成签到,获得积分10
5秒前
5秒前
fengfenghao发布了新的文献求助200
6秒前
绿豆蛙发布了新的文献求助10
10秒前
10秒前
dt完成签到,获得积分20
11秒前
俏皮的从阳完成签到 ,获得积分10
13秒前
钱从四面八方来完成签到 ,获得积分10
13秒前
辛勤的喉发布了新的文献求助10
17秒前
17秒前
11_aa完成签到,获得积分10
17秒前
丁丁丁完成签到,获得积分10
18秒前
20秒前
高c发布了新的文献求助10
21秒前
鱿鱼卷卷发布了新的文献求助20
21秒前
22秒前
lixueping完成签到,获得积分10
23秒前
思源应助maxi采纳,获得10
24秒前
26秒前
27秒前
jiayou发布了新的文献求助10
28秒前
光盘行动完成签到,获得积分20
28秒前
万能图书馆应助不要加糖采纳,获得10
28秒前
不见高山发布了新的文献求助10
32秒前
共享精神应助韩维采纳,获得10
32秒前
Milesgao完成签到,获得积分10
33秒前
36秒前
耶耶耶耶宝完成签到,获得积分10
37秒前
不见高山完成签到,获得积分10
38秒前
科研通AI5应助幕山白采纳,获得10
38秒前
39秒前
39秒前
一然完成签到,获得积分10
39秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792319
求助须知:如何正确求助?哪些是违规求助? 3336507
关于积分的说明 10281242
捐赠科研通 3053236
什么是DOI,文献DOI怎么找? 1675541
邀请新用户注册赠送积分活动 803492
科研通“疑难数据库(出版商)”最低求助积分说明 761436