染料木素
化学
多糖
溶解度
纳米颗粒
食品科学
生物化学
纳米技术
有机化学
材料科学
生物
内分泌学
作者
Lijuan Shi,Zhen Lin,Jiantong Hou,Wenhui Liu,Jing Xu,Yuanqiang Guo
标识
DOI:10.1016/j.ijbiomac.2023.124635
摘要
Genistein is an isoflavone with chemopreventive and therapeutic effects on various types of cancers. Apparently, in contrast to the advantages of multi-target therapy, the poor water solubility of this molecule is a major obstacle to its clinical application. In this work, zein/chicory polysaccharide nanoparticles (G-zein-P NPs) were prepared by pH-induced antisolvent precipitation method for the encapsulation of genistein. Firstly, an acidic polysaccharide (CIP70-2) with a molecular weight of 66.7 kDa was identified from the roots of chicory (Cichorium intybus). This natural macromolecule was identified as a plant pectin, for which the structure included RG-I (rhamnogalacturonan I) and HG (homogalacturonan) regions. Using this polysaccharide, G-zein-P NPs were prepared, in which the water solubility of genistein was improved by encapsulation. The encapsulation efficiency and loading efficiency of genistein by composite nanoparticles reached 99.0 % and 6.96 %, respectively. In vitro tumor inhibition experiments showed that the inhibitory effect of G-zein-P NPs on HepG2 cells was twice that of unencapsulated genistein. Moreover, the significant inhibition of tumor development and metastasis by G-zein-P NPs was observed in zebrafish xenograft models. The results suggested that zein/chicory polysaccharide nanoparticles may be a promising delivery carrier for genistein application in cancer prevention and therapy.
科研通智能强力驱动
Strongly Powered by AbleSci AI