Statistics of fingerprint minutiae frequency and distribution based on automatic minutiae detection method

细节 指纹(计算) 人工智能 模式识别(心理学) 轮藻(软体动物) 指纹识别 计算机科学 鉴定(生物学) 植物 生物
作者
Mengting Gao,Yunqi Tang,Huan Liu,R. Ma
出处
期刊:Forensic Science International [Elsevier]
卷期号:344: 111572-111572
标识
DOI:10.1016/j.forsciint.2023.111572
摘要

The Daubert case in Philadelphia in 1999 caused a debate about the scientificity of fingerprint evidence. Since then, the current fingerprint identification system has been constantly challenged and questioned. Quantitative identification technology based on the statistics of fingerprint minutiae has become a new research hot spot. In this paper, an automatic detection algorithm is designed to achieve automatic classification of fingerprint minutiae using the deep convolution neural network YOLOv5 model. Then the occurrence frequencies of minutiae are statistically evaluated in 619,297 fingerprint images. The results show that the frequency ranges (unit%) of six types of minutiae per finger are ridge endings [68.49, 70.81], bifurcations [26.37, 27.26], independent ridges [1.533, 1.626], spurs [1.129, 1.198], lakes [0.4588, 0.4963], crossovers [0.3034, 0.3256]. The results also show that there are differences in the distribution frequency of the six types of minutiae in the ten finger positions ( thumb, middle, ring, index and little finger of the left and right hand) and in the four finger patterns ( arch, left loop, right loop and whorl). From the quantitative point of view of fingerprint identification, this paper calculates the number and frequency ranges of six types of minutiae, distinguishes the evaluation value of each type of minutiae, and provides the basic data support for establishing a probability model of fingerprint identification in the future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
2秒前
Sam十九发布了新的文献求助10
3秒前
Faye发布了新的文献求助10
4秒前
老驴拉磨完成签到 ,获得积分10
4秒前
大胆的爆米花完成签到,获得积分20
4秒前
Suki完成签到 ,获得积分10
4秒前
冷静妙海完成签到 ,获得积分10
6秒前
7秒前
7秒前
by发布了新的文献求助30
7秒前
飞快的雁发布了新的文献求助20
9秒前
10秒前
10秒前
852应助pinecone采纳,获得10
10秒前
追风完成签到 ,获得积分10
11秒前
酷酷朋友完成签到,获得积分10
11秒前
开心青旋发布了新的文献求助10
11秒前
12秒前
13秒前
13秒前
科研通AI6.1应助鹅毛大雪采纳,获得10
14秒前
七月火发布了新的文献求助10
15秒前
Ease完成签到,获得积分10
15秒前
star009发布了新的文献求助10
15秒前
17秒前
Gg发布了新的文献求助10
18秒前
chbbit发布了新的文献求助10
18秒前
WYQ驳回了汉堡包应助
18秒前
18秒前
sxb10101应助up325采纳,获得10
19秒前
e任思发布了新的文献求助10
21秒前
量子星尘发布了新的文献求助50
22秒前
22秒前
科研通AI2S应助Penny采纳,获得10
22秒前
Wei发布了新的文献求助10
22秒前
dll发布了新的文献求助10
23秒前
24秒前
ayayaya完成签到 ,获得积分10
24秒前
Cheems完成签到,获得积分10
24秒前
英姑应助无私的碧菡采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5793766
求助须知:如何正确求助?哪些是违规求助? 5751855
关于积分的说明 15486911
捐赠科研通 4920711
什么是DOI,文献DOI怎么找? 2649063
邀请新用户注册赠送积分活动 1596378
关于科研通互助平台的介绍 1550927