From center to surrounding: An interactive learning framework for hyperspectral image classification

高光谱成像 卷积神经网络 人工智能 计算机科学 像素 渲染(计算机图形) 深度学习 变压器 模式识别(心理学) 计算机视觉 工程类 电气工程 电压
作者
Jiaqi Yang,Bo Du,Liangpei Zhang
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:197: 145-166 被引量:73
标识
DOI:10.1016/j.isprsjprs.2023.01.024
摘要

Owing to rich spectral and spatial information, hyperspectral image (HSI) can be utilized for finely classifying different land covers. With the emergence of deep learning techniques, convolutional neural network (CNN), fully convolutional network (FCN), and recurrent neural network (RNN) have been widely applied in the field of HSI classification. Recently, transformer-based approaches represented by Vision Transformer (ViT) have yielded promising performance on numerous tasks and have been introduced to classify HSI. However, existing methods based on the above architectures still face three crucial issues that limit the classification performance: 1) geometric constraints caused by input data, 2) contribution fuzziness of central pixels with details, and 3) interaction gap between local areas and further environments. To tackle the above problems, an interactive learning framework inspired by ViT is proposed from a center to surrounding perspective, namely the center-to-surrounding interactive learning (CSIL) framework. Different from existing works, the CSIL framework enables to achieve multi-scale, detail-aware, and space-interactive classification based on a well-designed hierarchical region sampling strategy, center transformer, and surrounding transformer. Specifically, a hierarchical region sampling strategy is first proposed to flexibly generate the center region, neighbor region, and surrounding region, respectively. Thus, multi-scale input data breaks the geometric constraints. Second, a center transformer is presented to obtain core characteristics in detail based on the center region. In this way, central pixels are remarkably highlighted and the details are easily perceived. Third, a surrounding transformer including interactive self-attention learning is formulated for interacting both locally fine-grained distributions in the neighbor region and further coarse-grained environments in the surrounding region. With this structure, short- and long-term dependencies can be modeled, emphasized, and exchanged to bridge the interaction gap. Finally, the features from center transformer and surrounding transformer are integrated, then fed into a multi-layer perceptron for the optimization of semantic representation. Extensive experiments on six HSI datasets including small-, medium-, and large-scale scenes demonstrate the superiority over state-of-the-art CNN–, FCN-, RNN- and transformer-based approaches, even with very few training samples (for example 0.19% in complex HanChuan city scene). The source code will be available soon at https://github.com/jqyang22/CSIL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ChenXY应助靓丽三德采纳,获得50
1秒前
大个应助复杂储采纳,获得10
1秒前
lu完成签到,获得积分10
1秒前
1秒前
我是老大应助kyra采纳,获得10
1秒前
1秒前
英姑应助阔达宝莹采纳,获得10
2秒前
RockRedfoo发布了新的文献求助10
2秒前
陈隆发布了新的文献求助10
3秒前
博格巴发布了新的文献求助10
3秒前
4秒前
英俊的铭应助幸运星采纳,获得10
4秒前
蓝天发布了新的文献求助10
5秒前
5秒前
5秒前
我在青年湖旁完成签到,获得积分10
5秒前
太叔丹翠完成签到 ,获得积分10
6秒前
美丽的问安完成签到 ,获得积分10
6秒前
无花果应助陶醉的蜜蜂采纳,获得10
7秒前
情怀应助Shubin828采纳,获得10
7秒前
惕守完成签到,获得积分10
8秒前
小白脸发布了新的文献求助10
8秒前
852应助20150327采纳,获得10
8秒前
9秒前
ggbod发布了新的文献求助10
9秒前
天天快乐应助勤奋的一手采纳,获得10
9秒前
Ava应助yanna采纳,获得10
10秒前
strive发布了新的文献求助10
10秒前
影像组学发布了新的文献求助30
10秒前
Sky发布了新的文献求助10
10秒前
10秒前
无极微光应助杨倩采纳,获得20
11秒前
在水一方应助喜悦一德采纳,获得10
11秒前
12秒前
12秒前
13秒前
田様应助青葱之松采纳,获得10
13秒前
13秒前
er发布了新的文献求助10
14秒前
微垣发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5649011
求助须知:如何正确求助?哪些是违规求助? 4777097
关于积分的说明 15046363
捐赠科研通 4807843
什么是DOI,文献DOI怎么找? 2571160
邀请新用户注册赠送积分活动 1527756
关于科研通互助平台的介绍 1486683